-
1
-
-
77951699013
-
-
For recent reviews, see
-
For recent reviews, see
-
-
-
-
4
-
-
33750002664
-
-
For recent publications, see:
-
Corbett, P. T., Leclaire, J., Vial, L., West, K. R., Wietor, J.-L., Sanders, J. K. M., and Otto, S. Chem. Rev. 2006, 106, 3652-3711 For recent publications, see:
-
(2006)
Chem. Rev.
, vol.106
, pp. 3652-3711
-
-
Corbett, P.T.1
Leclaire, J.2
Vial, L.3
West, K.R.4
Wietor, J.-L.5
Sanders, J.K.M.6
Otto, S.7
Au-Yeung, H.Y.8
Pantos, G.D.9
Sanders, J.K.M.10
-
5
-
-
70349563367
-
-
Au-Yeung, H. Y., Pantos, G. D., and Sanders, J. K. M. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 10466-10470
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 10466-10470
-
-
Au-Yeung, H.Y.1
Pantos, G.D.2
Sanders, J.K.M.3
-
6
-
-
77951687013
-
-
Au-Yueng, H. Y., Pengo, P., Pantos, G. D., Otto, S., and Sanders, J. K. M. Chem. Commun. 2009, 419-421
-
(2009)
Chem. Commun.
, pp. 419-421
-
-
Au-Yueng, H.Y.1
Pengo, P.2
Pantos, G.D.3
Otto, S.4
Sanders, J.K.M.5
-
7
-
-
64549106182
-
-
Barboiu, M., Dumitru, F., Legrand, Y. M., Petit, E., and van der Lee, A. Chem. Commun. 2009, 2192-2194
-
(2009)
Chem. Commun.
, pp. 2192-2194
-
-
Barboiu, M.1
Dumitru, F.2
Legrand, Y.M.3
Petit, E.4
Van Der Lee, A.5
-
8
-
-
67649148498
-
-
Cacciapaglia, R., Di Stefano, S., Ercolani, G., and Mandolini, L. Macromolecules 2009, 42, 4077-4083
-
(2009)
Macromolecules
, vol.42
, pp. 4077-4083
-
-
Cacciapaglia, R.1
Di Stefano, S.2
Ercolani, G.3
Mandolini, L.4
-
10
-
-
70349948779
-
-
Gasparini, G., Bettin, F., Scrimin, P., and Prins, L. J. Angew. Chem., Int. Ed. 2009, 48, 4546-4550
-
(2009)
Angew. Chem., Int. Ed.
, vol.48
, pp. 4546-4550
-
-
Gasparini, G.1
Bettin, F.2
Scrimin, P.3
Prins, L.J.4
-
12
-
-
59049100645
-
-
Nguyen, R., Allouche, L., Buhler, E., and Giuseppone, N. Angew. Chem., Int. Ed. 2009, 48, 1093-1096
-
(2009)
Angew. Chem., Int. Ed.
, vol.48
, pp. 1093-1096
-
-
Nguyen, R.1
Allouche, L.2
Buhler, E.3
Giuseppone, N.4
-
13
-
-
58149231006
-
-
Williams, R. J., Smith, A. M., Collins, R., Hodson, N., Das, A. K., and Ulijn, R. V. Nat. Nanotechnol. 2009, 4, 19-24
-
(2009)
Nat. Nanotechnol.
, vol.4
, pp. 19-24
-
-
Williams, R.J.1
Smith, A.M.2
Collins, R.3
Hodson, N.4
Das, A.K.5
Ulijn, R.V.6
-
15
-
-
67649859506
-
-
Perez-Fernandez, R., Pittelkow, M., Belenguer, A. M., Lane, L. A., Robinson, C. V., and Sanders, J. K. M. Chem. Commun. 2009, 3708-3710
-
(2009)
Chem. Commun.
, pp. 3708-3710
-
-
Perez-Fernandez, R.1
Pittelkow, M.2
Belenguer, A.M.3
Lane, L.A.4
Robinson, C.V.5
Sanders, J.K.M.6
-
17
-
-
67650079176
-
-
Ura, Y., Beierle, J. M., Leman, L. J., Orgel, L. E., and Ghadiri, M. R. Science 2009, 325, 73-77
-
(2009)
Science
, vol.325
, pp. 73-77
-
-
Ura, Y.1
Beierle, J.M.2
Leman, L.J.3
Orgel, L.E.4
Ghadiri, M.R.5
-
18
-
-
46149100860
-
-
Gasparini, G., Prins, L. J., and Scrimin, P. Angew. Chem., Int. Ed. 2008, 47, 2475-2479
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, pp. 2475-2479
-
-
Gasparini, G.1
Prins, L.J.2
Scrimin, P.3
-
19
-
-
24044533497
-
-
Vial, L., Sanders, J. K. M., and Otto, S. New J. Chem. 2005, 29, 1001-1003
-
(2005)
New J. Chem.
, vol.29
, pp. 1001-1003
-
-
Vial, L.1
Sanders, J.K.M.2
Otto, S.3
-
20
-
-
0242500379
-
-
Brisig, B., Sanders, J. K. M., and Otto, S. Angew. Chem., Int. Ed. 2003, 42, 1270-1273
-
(2003)
Angew. Chem., Int. Ed.
, vol.42
, pp. 1270-1273
-
-
Brisig, B.1
Sanders, J.K.M.2
Otto, S.3
-
22
-
-
57549097653
-
-
Sadownik, J. W. and Philp, D. Angew. Chem., Int. Ed. 2008, 47, 9965-9970
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, pp. 9965-9970
-
-
Sadownik, J.W.1
Philp, D.2
-
23
-
-
77949778537
-
-
Carnall, J. M. A., Waudby, C. A., Belenguer, A. M., Stuart, M. C. A., Peyralans, J. J.-P., and Otto, S. Science 2010, 327, 1502-1506
-
(2010)
Science
, vol.327
, pp. 1502-1506
-
-
Carnall, J.M.A.1
Waudby, C.A.2
Belenguer, A.M.3
Stuart, M.C.A.4
Peyralans, J.J.-P.5
Otto, S.6
-
24
-
-
50249160597
-
-
West, K. R., Ludlow, R. F., Corbett, P. T., Besenius, P., Mansfeld, F. M., Cormack, P. A. G., Sherrington, D. C., Goodman, J. M., Stuart, M. C. A., and Otto, S. J. Am. Chem. Soc. 2008, 130, 10834-10835
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 10834-10835
-
-
West, K.R.1
Ludlow, R.F.2
Corbett, P.T.3
Besenius, P.4
Mansfeld, F.M.5
Cormack, P.A.G.6
Sherrington, D.C.7
Goodman, J.M.8
Stuart, M.C.A.9
Otto, S.10
-
25
-
-
18244373223
-
-
Lam, R. T. S., Belenguer, A., Roberts, S. L., Naumann, C., Jarrosson, T., Otto, S., and Sanders, J. K. M. Science 2005, 308, 667-669
-
(2005)
Science
, vol.308
, pp. 667-669
-
-
Lam, R.T.S.1
Belenguer, A.2
Roberts, S.L.3
Naumann, C.4
Jarrosson, T.5
Otto, S.6
Sanders, J.K.M.7
-
26
-
-
77951668111
-
-
Amplification factors are defined as the concentration of a given library member in the presence of the template relative to its concentration in the absence of template
-
Amplification factors are defined as the concentration of a given library member in the presence of the template relative to its concentration in the absence of template.
-
-
-
-
29
-
-
53849135597
-
-
Corbett, P. T., Sanders, J. K. M., and Otto, S. Chem. - Eur. J. 2008, 14, 2153-2166
-
(2008)
Chem. - Eur. J.
, vol.14
, pp. 2153-2166
-
-
Corbett, P.T.1
Sanders, J.K.M.2
Otto, S.3
-
30
-
-
21644484866
-
-
Corbett, P. T., Sanders, J. K. M., and Otto, S. J. Am. Chem. Soc. 2005, 127, 9390-9392
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 9390-9392
-
-
Corbett, P.T.1
Sanders, J.K.M.2
Otto, S.3
-
31
-
-
3142656712
-
-
Corbett, P. T., Otto, S., and Sanders, J. K. M. Chem. - Eur. J. 2004, 10, 3139-3143
-
(2004)
Chem. - Eur. J.
, vol.10
, pp. 3139-3143
-
-
Corbett, P.T.1
Otto, S.2
Sanders, J.K.M.3
-
32
-
-
77951685729
-
-
Using a large excess of template gives the highest amplification factors, while using close-to-stoichiometric amounts of template gives the best selectivities
-
Using a large excess of template gives the highest amplification factors, while using close-to-stoichiometric amounts of template gives the best selectivities.
-
-
-
-
34
-
-
2942594718
-
-
Corbett, P. T., Otto, S., and Sanders, J. K. M. Org. Lett. 2004, 6, 1825-1827
-
(2004)
Org. Lett.
, vol.6
, pp. 1825-1827
-
-
Corbett, P.T.1
Otto, S.2
Sanders, J.K.M.3
-
35
-
-
77951681469
-
-
These models assume that any library member can directly interconvert into any other library member, which is only true for libraries made from a single building block
-
These models assume that any library member can directly interconvert into any other library member, which is only true for libraries made from a single building block.
-
-
-
-
36
-
-
35048828472
-
-
McNaughton, B. R., Gareiss, P. C., and Miller, B. L. J. Am. Chem. Soc. 2007, 129, 11306-11307
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 11306-11307
-
-
Mcnaughton, B.R.1
Gareiss, P.C.2
Miller, B.L.3
-
38
-
-
77951682290
-
-
Two more reports of large DCLs exist
-
Two more reports of large DCLs exist
-
-
-
-
40
-
-
0037133560
-
-
In (a) the screening method relies on the chromophore of only one of the building blocks, so that all library members not containing this building block remain invisible. In (b) a difunctional scaffold is used, but the binding pocket of the protein target can only accommodate singly functionalized scaffold molecules. Moreover, the imine equilibrium lies on the side of the starting materials, so that the concentration of the difunctionalized library members remains very low
-
Hochgurtel, M., Kroth, H., Piecha, D., Hofmann, M. W., Nicolau, C., Krause, S., Schaaf, O., Sonnenmoser, G., and Eliseev, A. V. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 3382-3387. In (a) the screening method relies on the chromophore of only one of the building blocks, so that all library members not containing this building block remain invisible. In (b) a difunctional scaffold is used, but the binding pocket of the protein target can only accommodate singly functionalized scaffold molecules. Moreover, the imine equilibrium lies on the side of the starting materials, so that the concentration of the difunctionalized library members remains very low
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 3382-3387
-
-
Hochgurtel, M.1
Kroth, H.2
Piecha, D.3
Hofmann, M.W.4
Nicolau, C.5
Krause, S.6
Schaaf, O.7
Sonnenmoser, G.8
Eliseev, A.V.9
-
41
-
-
77951672602
-
-
In these simulations we do not consider any chemical structure, only template binding affinities and equilibrium constants describing the formation of library members from the building blocks
-
In these simulations we do not consider any chemical structure, only template binding affinities and equilibrium constants describing the formation of library members from the building blocks.
-
-
-
-
42
-
-
77951676770
-
-
Normal distributions appear to be a good approximation of affinity distributions observed for receptors within a given class. See
-
Normal distributions appear to be a good approximation of affinity distributions observed for receptors within a given class. See
-
-
-
-
44
-
-
0242386506
-
-
Houk, K. N., Leach, A. G., Kim, S. P., and Zhang, X. Y. Angew. Chem., Int. Ed. 2003, 42, 4872-4897
-
(2003)
Angew. Chem., Int. Ed.
, vol.42
, pp. 4872-4897
-
-
Houk, K.N.1
Leach, A.G.2
Kim, S.P.3
Zhang, X.Y.4
-
45
-
-
77951682935
-
-
Note that the size of the data set needed for obtaining statistically significant guidance on the issue of library size presents a huge challenge to any experimental approach of this subject.
-
Note that the size of the data set needed for obtaining statistically significant guidance on the issue of library size presents a huge challenge to any experimental approach of this subject.
-
-
-
-
46
-
-
77951687346
-
-
This implies a lower absolute detection threshold for larger libraries. However, within identical experimental conditions (same template and total building block concentration) the absolute threshold for a 16 building block library differs from that of a 4 building block library only by a factor of 7 (Figure S1). Hence, injecting a 7-fold larger volume of sample for the 16 building block library would give effectively the same absolute detection threshold
-
This implies a lower absolute detection threshold for larger libraries. However, within identical experimental conditions (same template and total building block concentration) the absolute threshold for a 16 building block library differs from that of a 4 building block library only by a factor of 7 (Figure S1). Hence, injecting a 7-fold larger volume of sample for the 16 building block library would give effectively the same absolute detection threshold.
-
-
-
-
47
-
-
77951694058
-
-
Repeating the analysis with a detection threshold of amplification effects of 10% of the concentration of the most abundant library member gave comparable results. See Figure S2
-
Repeating the analysis with a detection threshold of amplification effects of 10% of the concentration of the most abundant library member gave comparable results. See Figure S2.
-
-
-
-
48
-
-
77951682461
-
-
While strong binders will generally have higher amplification factors (5) these may still not be sufficient to make these compounds detectable in cases where the concentration of the particular library member in the absence of the template was very low (as is, for example, the case for a higher oligomer containing several copies of the same building block)
-
While strong binders will generally have higher amplification factors (5) these may still not be sufficient to make these compounds detectable in cases where the concentration of the particular library member in the absence of the template was very low (as is, for example, the case for a higher oligomer containing several copies of the same building block).
-
-
-
-
49
-
-
77951691985
-
-
The average was taken of 100 separate simulations that differed only in the randomly assigned template binding affinities
-
The average was taken of 100 separate simulations that differed only in the randomly assigned template binding affinities.
-
-
-
-
50
-
-
77951691638
-
-
Given the less than perfect correlation between amplification factors and binding affinities in most DCLs (6, 7) it is advisable to follow up on several of the most amplified compounds. Here we arbitrarily decided to consider the three most amplified compounds
-
Given the less than perfect correlation between amplification factors and binding affinities in most DCLs (6, 7) it is advisable to follow up on several of the most amplified compounds. Here we arbitrarily decided to consider the three most amplified compounds.
-
-
-
-
51
-
-
77951679261
-
-
The statistically expected affinity refers to the highest affinity based on n random draws from a normal distribution (mean log K = 2; standard deviation = 1), where n = the number of detectable library members. See
-
The statistically expected affinity refers to the highest affinity based on n random draws from a normal distribution (mean log K = 2; standard deviation = 1), where n = the number of detectable library members. See
-
-
-
-
53
-
-
77951688413
-
-
More detailed experimental recommendations are provided in the Supporting Information
-
More detailed experimental recommendations are provided in the Supporting Information.
-
-
-
-
54
-
-
77951683915
-
-
Our simulations are based on the assumption that binding constants of the library members obey a log normal distribution. This assumption may not hold when combining structurally very different building blocks
-
Our simulations are based on the assumption that binding constants of the library members obey a log normal distribution. This assumption may not hold when combining structurally very different building blocks.
-
-
-
|