메뉴 건너뛰기




Volumn 21, Issue 9, 2008, Pages 1328-1343

Neural network learning of optimal Kalman prediction and control

Author keywords

Kalman control; Kalman filter; Local cortical circuit; Recurrent neural network

Indexed keywords

CIVIL AVIATION; CONTROL SYSTEMS; CONTROL THEORY; FORECASTING; IMAGE CLASSIFICATION; LINEAR SYSTEMS; MAMMALS; NETWORK PROTOCOLS; NEURAL NETWORKS; PROBABILITY DENSITY FUNCTION; RECURRENT NEURAL NETWORKS; REINFORCEMENT LEARNING; SENSOR NETWORKS;

EID: 54449089010     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2008.05.002     Document Type: Article
Times cited : (22)

References (37)
  • 1
    • 0026586030 scopus 로고
    • Self-organizing neural network that discovers surfaces in random-dot stereograms
    • Becker S., and Hinton G.E. Self-organizing neural network that discovers surfaces in random-dot stereograms. Nature 355 (1992) 161-163
    • (1992) Nature , vol.355 , pp. 161-163
    • Becker, S.1    Hinton, G.E.2
  • 2
    • 0031953879 scopus 로고    scopus 로고
    • Local circuits in primary visual cortex of the macaque monkey
    • Callaway E.M. Local circuits in primary visual cortex of the macaque monkey. Annual Review of Neuroscience 21 (1998) 47-74
    • (1998) Annual Review of Neuroscience , vol.21 , pp. 47-74
    • Callaway, E.M.1
  • 4
    • 29344440260 scopus 로고    scopus 로고
    • George, D., & Hawkins, J. (2005). A hierarchical Bayesian model of invariant pattern recognition in the visual cortex. In Proceedings of the International Joint Conference on Neural Networks (pp. 1812-1817). Vol. 3
    • George, D., & Hawkins, J. (2005). A hierarchical Bayesian model of invariant pattern recognition in the visual cortex. In Proceedings of the International Joint Conference on Neural Networks (pp. 1812-1817). Vol. 3
  • 5
  • 6
    • 0035148612 scopus 로고    scopus 로고
    • A neural model of how horizontal and interlaminar connections of visual cortex develop into adult circuits that carry out perceptual grouping and learning
    • Grossberg S., and Williamson J.R. A neural model of how horizontal and interlaminar connections of visual cortex develop into adult circuits that carry out perceptual grouping and learning. Cerebral Cortex 11 (2001) 37-58
    • (2001) Cerebral Cortex , vol.11 , pp. 37-58
    • Grossberg, S.1    Williamson, J.R.2
  • 8
    • 0012347694 scopus 로고    scopus 로고
    • Wiley-Interscience See especially chap. 2, pp. 23-68 by Puskorius, G.V. & Feldkamp, L.A. Parameter-based Kalman filter training: Theory and implementation
    • Haykin S. Kalman filtering and neural networks (2001), Wiley-Interscience See especially chap. 2, pp. 23-68 by Puskorius, G.V. & Feldkamp, L.A. Parameter-based Kalman filter training: Theory and implementation
    • (2001) Kalman filtering and neural networks
    • Haykin, S.1
  • 11
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G.E., Osindero S., and Teh Y. A fast learning algorithm for deep belief nets. Neural Computation 18 (2006) 1527-1554
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 12
    • 0032189548 scopus 로고    scopus 로고
    • Ascending projections of simple and complex cells in layer 6 of the cat striate cortex
    • Hirsch J.A., Gallagher C.A., Alonso J.-M., and Martinez L.M. Ascending projections of simple and complex cells in layer 6 of the cat striate cortex. Journal of Neuroscience 18 (1998) 8086-8094
    • (1998) Journal of Neuroscience , vol.18 , pp. 8086-8094
    • Hirsch, J.A.1    Gallagher, C.A.2    Alonso, J.-M.3    Martinez, L.M.4
  • 14
    • 54449098579 scopus 로고    scopus 로고
    • Klimasauskas, C. C., & Guiver, J. P. (2001). Hybrid linear - Neural network process control. US Patent #6278962
    • Klimasauskas, C. C., & Guiver, J. P. (2001). Hybrid linear - Neural network process control. US Patent #6278962
  • 15
    • 1642553405 scopus 로고    scopus 로고
    • Bayesian integration in sensorimotor learning
    • Körding K.P., and Wolpert D.M. Bayesian integration in sensorimotor learning. Nature 427 (2004) 244-247
    • (2004) Nature , vol.427 , pp. 244-247
    • Körding, K.P.1    Wolpert, D.M.2
  • 18
    • 0001525549 scopus 로고
    • Local synaptic learning rules suffice to maximize mutual information in a linear network
    • Linsker R. Local synaptic learning rules suffice to maximize mutual information in a linear network. Neural Computation 4 (1992) 691-702
    • (1992) Neural Computation , vol.4 , pp. 691-702
    • Linsker, R.1
  • 19
    • 19344364552 scopus 로고    scopus 로고
    • Improved local learning rule for information maximization and related applications
    • Linsker R. Improved local learning rule for information maximization and related applications. Neural Networks 18 (2005) 261-265
    • (2005) Neural Networks , vol.18 , pp. 261-265
    • Linsker, R.1
  • 22
    • 7244219792 scopus 로고    scopus 로고
    • Generalization in vision and motor control
    • Poggio T., and Bizzi E. Generalization in vision and motor control. Nature 431 (2004) 768-774
    • (2004) Nature , vol.431 , pp. 768-774
    • Poggio, T.1    Bizzi, E.2
  • 23
    • 0034888437 scopus 로고    scopus 로고
    • Context-sensitive binding by the laminar circuits of V1 and V2: A unified model of perceptual grouping, attention, and orientation contrast
    • see refs. cited in Table 1
    • Raizada R.D.S., and Grossberg S. Context-sensitive binding by the laminar circuits of V1 and V2: A unified model of perceptual grouping, attention, and orientation contrast. Visual Cognition 8 (2001) 431-466 see refs. cited in Table 1
    • (2001) Visual Cognition , vol.8 , pp. 431-466
    • Raizada, R.D.S.1    Grossberg, S.2
  • 24
    • 0032895527 scopus 로고    scopus 로고
    • An optimal estimation approach to visual perception and learning
    • Rao R.P.N. An optimal estimation approach to visual perception and learning. Vision Research 39 (1999) 1963-1989
    • (1999) Vision Research , vol.39 , pp. 1963-1989
    • Rao, R.P.N.1
  • 25
    • 0347527070 scopus 로고    scopus 로고
    • Bayesian computation in recurrent neural circuits
    • Rao R.P.N. Bayesian computation in recurrent neural circuits. Neural Computation 16 (2004) 1-38
    • (2004) Neural Computation , vol.16 , pp. 1-38
    • Rao, R.P.N.1
  • 26
    • 27544474179 scopus 로고    scopus 로고
    • Bayesian inference and attentional modulation in the visual cortex
    • Rao R.P.N. Bayesian inference and attentional modulation in the visual cortex. NeuroReport 16 (2005) 1843-1848
    • (2005) NeuroReport , vol.16 , pp. 1843-1848
    • Rao, R.P.N.1
  • 27
    • 0031570014 scopus 로고    scopus 로고
    • Dynamic model of visual recognition predicts neural response properties in the visual cortex
    • Rao R.P.N., and Ballard D.H. Dynamic model of visual recognition predicts neural response properties in the visual cortex. Neural Computation 9 (1997) 721-763
    • (1997) Neural Computation , vol.9 , pp. 721-763
    • Rao, R.P.N.1    Ballard, D.H.2
  • 29
    • 0032584921 scopus 로고    scopus 로고
    • A recursive algorithm based on the extended Kalman filter for the training of feedforward neural models
    • Rivals I., and Personnaz L. A recursive algorithm based on the extended Kalman filter for the training of feedforward neural models. Neurocomputing 20 (1998) 279-294
    • (1998) Neurocomputing , vol.20 , pp. 279-294
    • Rivals, I.1    Personnaz, L.2
  • 32
    • 0742306447 scopus 로고    scopus 로고
    • Kalman filter control embedded into the reinforcement learning framework
    • Szita I., and Lo{double acute}rincz A. Kalman filter control embedded into the reinforcement learning framework. Neural Computation 16 (2004) 491-499
    • (2004) Neural Computation , vol.16 , pp. 491-499
    • Szita, I.1    Lorincz, A.2
  • 33
    • 17444420654 scopus 로고    scopus 로고
    • Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system
    • Todorov E. Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system. Neural Computation 17 (2005) 1084-1108
    • (2005) Neural Computation , vol.17 , pp. 1084-1108
    • Todorov, E.1
  • 34
    • 54449101656 scopus 로고    scopus 로고
    • Tresp, V. (2001). Method and arrangement for the neural modelling of a dynamic system with non-linear stochastic behavior. US Patent #6272480
    • Tresp, V. (2001). Method and arrangement for the neural modelling of a dynamic system with non-linear stochastic behavior. US Patent #6272480
  • 35
    • 54449083574 scopus 로고    scopus 로고
    • Williams, R. J. (1992). Training recurrent networks using the extended Kalman filter. In Proceedings of the International Joint Conference on Neural Networks(pp. 241-246). Vol. IV
    • Williams, R. J. (1992). Training recurrent networks using the extended Kalman filter. In Proceedings of the International Joint Conference on Neural Networks(pp. 241-246). Vol. IV
  • 36
    • 84898963841 scopus 로고    scopus 로고
    • Inference, attention, and decision in a Bayesian neural architecture
    • Yu A.J., and Dayan P. Inference, attention, and decision in a Bayesian neural architecture. Advances in Neural Information Processing Systems 17 (2005) 1577-1584
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 1577-1584
    • Yu, A.J.1    Dayan, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.