메뉴 건너뛰기




Volumn 69, Issue 6, 2010, Pages 619-639

TOD: Temporal outlier detection by using quasi-functional temporal dependencies

Author keywords

Knowledge discovery; Temporal association rules; Temporal databases; Temporal functional dependencies; Temporal outlier detection

Indexed keywords

KNOWLEDGE DISCOVERY; OUTLIER DETECTION; TEMPORAL ASSOCIATION RULE; TEMPORAL DATABASE; TEMPORAL FUNCTIONAL DEPENDENCIES;

EID: 77951138707     PISSN: 0169023X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.datak.2010.02.003     Document Type: Article
Times cited : (12)

References (53)
  • 1
    • 0034133513 scopus 로고    scopus 로고
    • Distance-based outlier: algorithms and applications
    • Knorr E.M., Ng R.T., and Tucakov V. Distance-based outlier: algorithms and applications. VLDB Journal 8 3-4 (2000) 237-253
    • (2000) VLDB Journal , vol.8 , Issue.3-4 , pp. 237-253
    • Knorr, E.M.1    Ng, R.T.2    Tucakov, V.3
  • 3
    • 0040481253 scopus 로고    scopus 로고
    • A comparison of multivariate outlier detection methods for clinical laboratory safety data, the Statistician
    • Penny K.I., and Jolliffe I.T. A comparison of multivariate outlier detection methods for clinical laboratory safety data, the Statistician. Journal of the Royal Statistical Society 50 (2001) 295-308
    • (2001) Journal of the Royal Statistical Society , vol.50 , pp. 295-308
    • Penny, K.I.1    Jolliffe, I.T.2
  • 5
    • 0345201769 scopus 로고    scopus 로고
    • TANE: an efficient algorithm for discovering functional and approximate dependencies
    • Huhtala Y., Kärkkäinen J., Porkka P., and Toivonen H. TANE: an efficient algorithm for discovering functional and approximate dependencies. The Computer Journal 42 2 (1999) 100-111
    • (1999) The Computer Journal , vol.42 , Issue.2 , pp. 100-111
    • Huhtala, Y.1    Kärkkäinen, J.2    Porkka, P.3    Toivonen, H.4
  • 6
    • 0029373303 scopus 로고
    • Approximate inference of functional dependencies from relations
    • Kivinen J., and Mannila H. Approximate inference of functional dependencies from relations. Theoretical Computer Science 149 1 (1992) 129-149
    • (1992) Theoretical Computer Science , vol.149 , Issue.1 , pp. 129-149
    • Kivinen, J.1    Mannila, H.2
  • 9
    • 33748141109 scopus 로고    scopus 로고
    • The ramification problem in temporal databases: changing beliefs about the past
    • Papadakis N., Antoniou G., and Plexousakis D. The ramification problem in temporal databases: changing beliefs about the past. Data and Knowledge Engineering 59 2 (2006) 379-434
    • (2006) Data and Knowledge Engineering , vol.59 , Issue.2 , pp. 379-434
    • Papadakis, N.1    Antoniou, G.2    Plexousakis, D.3
  • 11
    • 71749119308 scopus 로고    scopus 로고
    • An approach for temporal analysis of email data based on segmentation
    • Chundi P., Subramaniam M., and Vasireddy D.K. An approach for temporal analysis of email data based on segmentation. Data and Knowledge Engineering 68 11 (2009) 1253-1270
    • (2009) Data and Knowledge Engineering , vol.68 , Issue.11 , pp. 1253-1270
    • Chundi, P.1    Subramaniam, M.2    Vasireddy, D.K.3
  • 12
    • 71749112568 scopus 로고    scopus 로고
    • Discovering hybrid temporal patterns from sequences consisting of point - and interval - based events
    • Wua S.-Y., and Chen Y.-L. Discovering hybrid temporal patterns from sequences consisting of point - and interval - based events. Data and Knowledge Engineering 68 11 (2009) 1309-1330
    • (2009) Data and Knowledge Engineering , vol.68 , Issue.11 , pp. 1309-1330
    • Wua, S.-Y.1    Chen, Y.-L.2
  • 14
    • 0039253819 scopus 로고    scopus 로고
    • M. Breunig, H. Kriegel, R. Hg, J. Sander, LOF: identifying density-based local outliers, in: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000, pp. 93-104.
    • M. Breunig, H. Kriegel, R. Hg, J. Sander, LOF: identifying density-based local outliers, in: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000, pp. 93-104.
  • 20
    • 67649653756 scopus 로고    scopus 로고
    • X. Li, Z. Li, J. Han, J.-G. Lee, Temporal outlier detection in vehicle traffic data, in: ICDE 2009, 2009, pp. 1319-1322.
    • X. Li, Z. Li, J. Han, J.-G. Lee, Temporal outlier detection in vehicle traffic data, in: ICDE 2009, 2009, pp. 1319-1322.
  • 22
    • 34548547034 scopus 로고    scopus 로고
    • Hot sax: Efficiently finding the most unusual time series subsequence
    • E. Keogh, J. Lin, A. Fu, Hot sax: efficiently finding the most unusual time series subsequence, in: ICDM'05, 2005, pp. 226-233.
    • (2005) ICDM'05 , pp. 226-233
    • Keogh, E.1    Lin, J.2    Fu, A.3
  • 23
    • 52649161757 scopus 로고    scopus 로고
    • Trajectory outlier detection: A partition-and-detect framework
    • J.-G. Lee, J. Han, X. Li, Trajectory outlier detection: a partition-and-detect framework, in: ICDE'08, 2008, pp. 140-149.
    • (2008) ICDE'08 , pp. 140-149
    • Lee, J.-G.1    Han, J.2    Li, X.3
  • 24
    • 0033871940 scopus 로고    scopus 로고
    • B. Yi, N. Sidiropoulos, T. Johnson, H. Jagadish, C. Falout, A. Biliris, Online data mining for co-evolving time sequences, in: ICDE 2000, 2000, pp. 13-22.
    • B. Yi, N. Sidiropoulos, T. Johnson, H. Jagadish, C. Falout, A. Biliris, Online data mining for co-evolving time sequences, in: ICDE 2000, 2000, pp. 13-22.
  • 29
    • 14544285420 scopus 로고    scopus 로고
    • Linear correlation discovery in databases: a data mining approach
    • Chiang R.H.L., Cecil C.E.H., and Lim E.-P. Linear correlation discovery in databases: a data mining approach. Data and Knowledge Engineering 53 3 (2005) 311-337
    • (2005) Data and Knowledge Engineering , vol.53 , Issue.3 , pp. 311-337
    • Chiang, R.H.L.1    Cecil, C.E.H.2    Lim, E.-P.3
  • 34
    • 34250202878 scopus 로고    scopus 로고
    • ARMADA - an algorithm for discovering richer relative temporal association rules from interval-based data
    • Winarko E., and Roddick J.F. ARMADA - an algorithm for discovering richer relative temporal association rules from interval-based data. Data and Knowledge Engineering 63 1 (2007) 76-90
    • (2007) Data and Knowledge Engineering , vol.63 , Issue.1 , pp. 76-90
    • Winarko, E.1    Roddick, J.F.2
  • 36
    • 20844447400 scopus 로고    scopus 로고
    • SMCA: a general model for mining asynchronous periodic patterns in temporal databases
    • Huang K.-Y., and Chang C.-H. SMCA: a general model for mining asynchronous periodic patterns in temporal databases. IEEE Transactions on Data and Knowledge Engineering 17 6 (2005) 774-785
    • (2005) IEEE Transactions on Data and Knowledge Engineering , vol.17 , Issue.6 , pp. 774-785
    • Huang, K.-Y.1    Chang, C.-H.2
  • 37
    • 77951134738 scopus 로고    scopus 로고
    • D.M. Group, PMML 4.0 specification, 2009. URL: http://www.dmg.org/v4-0/GeneralStructure.html.
    • D.M. Group, PMML 4.0 specification, 2009. URL: http://www.dmg.org/v4-0/GeneralStructure.html.
  • 38
    • 33644678773 scopus 로고    scopus 로고
    • KDDML: a middleware language and system for knowledge discovery in databases
    • Romei A., Ruggieri S., and Turini F. KDDML: a middleware language and system for knowledge discovery in databases. Data and Knowledge Engineering 57 2 (2006) 179-220
    • (2006) Data and Knowledge Engineering , vol.57 , Issue.2 , pp. 179-220
    • Romei, A.1    Ruggieri, S.2    Turini, F.3
  • 41
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation, in: SIGMOD'00, 2000, pp. 1-12.
    • (2000) SIGMOD'00 , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 45
    • 7544230450 scopus 로고    scopus 로고
    • Multidimensional fuzzy partitioning of attribute ranges for mining quantitative data
    • Gyenesei A., and Teuhola J. Multidimensional fuzzy partitioning of attribute ranges for mining quantitative data. International Journal of Intelligent Systems 19 (2004) 1111-1126
    • (2004) International Journal of Intelligent Systems , vol.19 , pp. 1111-1126
    • Gyenesei, A.1    Teuhola, J.2
  • 48
    • 33750512162 scopus 로고    scopus 로고
    • Intrusion detection by integrating boosting genetic fuzzy classifier and data mining criteria for rule pre-screening
    • Ozyer T., Alhajj R., and Barker K. Intrusion detection by integrating boosting genetic fuzzy classifier and data mining criteria for rule pre-screening. Journal of Network and Computer Applications 30 1 (2007) 99-113
    • (2007) Journal of Network and Computer Applications , vol.30 , Issue.1 , pp. 99-113
    • Ozyer, T.1    Alhajj, R.2    Barker, K.3
  • 49
    • 60749097716 scopus 로고    scopus 로고
    • DFP: a bioconductor package for fuzzy profile identification and gene reduction of microarray data
    • Glez-Pena D., Alvarez R., Diaz F., and Fdez-Riverola F. DFP: a bioconductor package for fuzzy profile identification and gene reduction of microarray data. BMC Bioinformatics 10 37 (2009) 1-8
    • (2009) BMC Bioinformatics , vol.10 , Issue.37 , pp. 1-8
    • Glez-Pena, D.1    Alvarez, R.2    Diaz, F.3    Fdez-Riverola, F.4
  • 50
    • 77951112910 scopus 로고    scopus 로고
    • The lucs-kdd fuzzy apriori-t software, URL
    • F. Coenen, The lucs-kdd fuzzy apriori-t software, 2008. URL: http://www.csc.liv.ac.uk/frans/KDD/Software/FuzzyAprioriT.
    • (2008)
    • Coenen, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.