메뉴 건너뛰기




Volumn 9, Issue 2, 2004, Pages 171-187

Outlier detection and data cleaning in multivariate non-normal samples: The PAELLA algorithm

Author keywords

Cluster analysis; Data cleaning; EM algorithm; Mixture model; Multivariate; Non normal; Outlier

Indexed keywords

ALGORITHMS; CALCULATIONS; COMPUTATIONAL METHODS; DATABASE SYSTEMS; LINEAR CONTROL SYSTEMS; MANUFACTURE; OPTIMIZATION; PERTURBATION TECHNIQUES; PROCESS CONTROL; REGRESSION ANALYSIS; SENSORS;

EID: 3543070082     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1023/B:DAMI.0000031630.50685.7c     Document Type: Article
Times cited : (26)

References (33)
  • 2
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield, J. and Raftery, A. 1993. Model-based Gaussian and non-Gaussian clustering. Biometrics, 49:803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.1    Raftery, A.2
  • 5
    • 0003707174 scopus 로고    scopus 로고
    • Scaling EM (expectation-maximization) clustering to large databases
    • Microsoft Research, Seattle
    • Bradley, P., Fayyad, U., and Reina, C. 1999. Scaling EM (expectation-maximization) clustering to large databases. Technical Report MSR-TR-98-35., Microsoft Research, Seattle.
    • (1999) Technical Report , vol.MSR-TR-98-35
    • Bradley, P.1    Fayyad, U.2    Reina, C.3
  • 6
    • 0001011286 scopus 로고
    • Robust procedures in multivariate analysis I: Robust covariance estimation
    • Campbell, N.A. 1990. Robust procedures in multivariate analysis I: Robust covariance estimation. Applied Statistics, 29:231-237.
    • (1990) Applied Statistics , vol.29 , pp. 231-237
    • Campbell, N.A.1
  • 11
    • 0041532309 scopus 로고
    • Clustering and clique partitioning: Simulated annealing and tabu search approaches
    • de Ammorin, S., Barthelemy, J.-P., and Ribeiro, C. 1992. Clustering and clique partitioning: Simulated annealing and tabu search approaches. J. Classification, 9:17-41.
    • (1992) J. Classification , vol.9 , pp. 17-41
    • De Ammorin, S.1    Barthelemy, J.-P.2    Ribeiro, C.3
  • 14
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley, C. and Raftery, A.E. 1998. How many clusters? Which clustering method? Answers via model-based cluster analysis. The Computer Journal 41(8);578-588.
    • (1998) The Computer Journal , vol.41 , Issue.8 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 15
    • 22844453564 scopus 로고    scopus 로고
    • MCLUST: Software for model-based cluster analysis
    • Fraley, C. and Raftery, A.E. 1999. MCLUST: Software for model-based cluster analysis. Journal of Classification, 16:297-306.
    • (1999) Journal of Classification , vol.16 , pp. 297-306
    • Fraley, C.1    Raftery, A.E.2
  • 17
    • 3543138223 scopus 로고    scopus 로고
    • A robust method for clustering analysis
    • Fakultät für Mathematik und Informatik, Universität Passau
    • Gallegos, M.T. 2000. A robust method for clustering analysis. Technical Report MIP-0013, Fakultät für Mathematik und Informatik, Universität Passau.
    • (2000) Technical Report , vol.MIP-0013
    • Gallegos, M.T.1
  • 21
    • 0041299700 scopus 로고    scopus 로고
    • Mixture models, robustness and the weighted likelihood methodology
    • Department of Statistics, Stanford University
    • Markatou, M. 1998. Mixture models, robustness and the weighted likelihood methodology. Technical Report 1998-9, Department of Statistics, Stanford University.
    • (1998) Technical Report , vol.1998 , Issue.9
    • Markatou, M.1
  • 22
    • 0346142060 scopus 로고
    • On the choice of starting values for the EM algorithm in fitting mixture models
    • McLachlan, G.J. 1988. On the choice of starting values for the EM algorithm in fitting mixture models. The Statistician, 37:417-425.
    • (1988) The Statistician , vol.37 , pp. 417-425
    • McLachlan, G.J.1
  • 25
    • 84947788012 scopus 로고    scopus 로고
    • Robust cluster analysis via mixtures of multivariate t-distributions
    • McLachlan, G.J. and Peel, D.J. 2000b. Robust cluster analysis via mixtures of multivariate t-distributions. Lectures Notes in Computer Science, 1451:658-666.
    • (2000) Lectures Notes in Computer Science , vol.1451 , pp. 658-666
    • McLachlan, G.J.1    Peel, D.J.2
  • 27
    • 0030344143 scopus 로고    scopus 로고
    • Identification of outliers in multivariate data
    • Rocke, D. and Woodruff, D. 1996. Identification of outliers in multivariate data. J. Amer. Statist. Assoc., 91:1047-1061.
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 1047-1061
    • Rocke, D.1    Woodruff, D.2
  • 31
    • 0007691931 scopus 로고    scopus 로고
    • Principal curve clustering with noise
    • Department of Statistics. University of Washington
    • Stanford, D. and Raftery, A.E. 1997. Principal curve clustering with noise. Technical Report 317, Department of Statistics. University of Washington.
    • (1997) Technical Report , vol.317
    • Stanford, D.1    Raftery, A.E.2
  • 32
    • 0009909258 scopus 로고    scopus 로고
    • Accelerating EM for large databases
    • Microsoft Research, Seattle
    • Thiesson, B., Meek, C., and Heckerman, D. 2000. Accelerating EM for large databases. Technical Report MSR-TR-99-31., Microsoft Research, Seattle.
    • (2000) Technical Report , vol.MSR-TR-99-31
    • Thiesson, B.1    Meek, C.2    Heckerman, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.