메뉴 건너뛰기




Volumn 63, Issue 1, 2007, Pages 76-90

ARMADA - An algorithm for discovering richer relative temporal association rules from interval-based data

Author keywords

ARMADA; Interval data; Relative temporal data mining; Temporal association rules

Indexed keywords

CONSTRAINT THEORY; DATA MINING; DATA STRUCTURES; SEMANTICS;

EID: 34250202878     PISSN: 0169023X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.datak.2006.10.009     Document Type: Article
Times cited : (122)

References (20)
  • 4
    • 0041454634 scopus 로고    scopus 로고
    • Y. Li, P. Ning, X.S. Wang, S. Jajodia, Discovering calendar-based temporal association rules, in: Proceedings of the 8th International Symposium on Temporal Representation and Reasoning, 2001, pp. 111-118.
  • 6
    • 0013024811 scopus 로고    scopus 로고
    • Beyond intratransaction association analysis: mining multidimensional intertransaction association rules
    • Lu H., Feng L., and Han J. Beyond intratransaction association analysis: mining multidimensional intertransaction association rules. ACM Transactions on Information Systems 18 4 (2000) 423-454
    • (2000) ACM Transactions on Information Systems , vol.18 , Issue.4 , pp. 423-454
    • Lu, H.1    Feng, L.2    Han, J.3
  • 8
    • 0020849266 scopus 로고
    • Maintaining knowledge about temporal intervals
    • Allen J. Maintaining knowledge about temporal intervals. Communications of the ACM 26 11 (1983) 832-843
    • (1983) Communications of the ACM , vol.26 , Issue.11 , pp. 832-843
    • Allen, J.1
  • 9
    • 0026839993 scopus 로고
    • Temporal reasoning based on semi-intervals
    • Freksa C. Temporal reasoning based on semi-intervals. Artificial Intelligence 54 (1992) 199-227
    • (1992) Artificial Intelligence , vol.54 , pp. 199-227
    • Freksa, C.1
  • 10
    • 17444430393 scopus 로고    scopus 로고
    • Linear temporal sequences and their interpretation using midpoint relationships
    • Roddick J.F., and Mooney C.H. Linear temporal sequences and their interpretation using midpoint relationships. IEEE Transactions on Knowledge and Data Engineering 17 1 (2005) 133-135
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.1 , pp. 133-135
    • Roddick, J.F.1    Mooney, C.H.2
  • 14
    • 84958047581 scopus 로고    scopus 로고
    • R. Villafane, K.A. Hua, D. Tran, B. Maulik, Mining interval time series, in: Data Warehousing and Knowledge Discovery, 1999, pp. 318-330.
  • 16
    • 34250170272 scopus 로고    scopus 로고
    • R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in: Proceedings of the 20th International Conference on Very Large Data Bases, 1994, pp. 487-499.
  • 17
    • 0034826102 scopus 로고    scopus 로고
    • SPADE: An efficient algorithm for mining frequent sequences
    • Zaki M.J. SPADE: An efficient algorithm for mining frequent sequences. Machine Learning Journal 42 1/2 (2001) 31-60
    • (2001) Machine Learning Journal , vol.42 , Issue.1-2 , pp. 31-60
    • Zaki, M.J.1
  • 18
    • 34250176676 scopus 로고    scopus 로고
    • F. Höppner, Learning temporal rules from state sequence, in: Proceedings of IJCAI Workshop on Learning from Temporal and Spatial Data, Seattle, USA, 2001, pp. 25-31.
  • 19
    • 51149112587 scopus 로고    scopus 로고
    • G. Koundourakis, B. Theodoulidis, Association rules and evolution in time, in: Proceedings of Methods and Applications of Artificial Intelligence, Second Hellenic Conference on AI, SETN 2002, Thessaloniki, Greece, 2002, pp. 261-272.
  • 20
    • 34250175956 scopus 로고    scopus 로고
    • H. Hamilton, D. Randall, Data mining with calendar attributes, in: J.F. Roddick, K. Hornsby (Eds.), International Workshop on Temporal, Spatial and Spatio-Temporal Data Mining, TSDM2000, vol. 2007 of LNAI, Springer, Lyon, France, 2000.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.