메뉴 건너뛰기




Volumn 19, Issue 11, 2004, Pages 1111-1126

Multidimensional fuzzy partitioning of attribute ranges for mining quantitative data

Author keywords

[No Author keywords available]

Indexed keywords

CUSTOMER SATISFACTION; DATA ACQUISITION; DATA MINING; DECISION MAKING; DECISION SUPPORT SYSTEMS; GENETIC ALGORITHMS; STATISTICAL METHODS;

EID: 7544230450     PISSN: 08848173     EISSN: None     Source Type: Journal    
DOI: 10.1002/int.20039     Document Type: Article
Times cited : (5)

References (29)
  • 1
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • Buneman P, Jajodia S, editors. New York: ACM Press
    • Agrawal R, Imielinski T, S wami A. Mining association rules between sets of items in large databases. In: Buneman P, Jajodia S, editors. Proc ACM SIGMOD. New York: ACM Press; 1993. pp 207-216.
    • (1993) Proc ACM SIGMOD , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 2
    • 0001882616 scopus 로고
    • Fast algorithm for mining association rules in large databases
    • Bocca JB, Jarke M, Zaniolo C, editors. San Francisco, CA: Morgan Kaufmann
    • Agrawal R, Srikant R. Fast algorithm for mining association rules in large databases. In: Bocca JB, Jarke M, Zaniolo C, editors. Proc 20th VLDB Conf. San Francisco, CA: Morgan Kaufmann; 1994. pp 487-499.
    • (1994) Proc 20th VLDB Conf. , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 3
    • 0030157416 scopus 로고    scopus 로고
    • Mining quantitative association rules in large relation tables
    • Widom J, editor. New York: ACM Press
    • Srikant R, Agrawal R. Mining quantitative association rules in large relation tables. In: Widom J, editor. Proc ACM SIGMOD. New York: ACM Press; 1996. pp 1-12.
    • (1996) Proc ACM SIGMOD , pp. 1-12
    • Srikant, R.1    Agrawal, R.2
  • 4
    • 0348132918 scopus 로고    scopus 로고
    • Fuzzy association rules in databases
    • Kuok CM, Fu A, Wong MH. Fuzzy association rules in databases. ACM SIGMOD Rec 1998;27:41-46.
    • (1998) ACM SIGMOD Rec , vol.27 , pp. 41-46
    • Kuok, C.M.1    Fu, A.2    Wong, M.H.3
  • 5
  • 6
    • 0031629657 scopus 로고    scopus 로고
    • An effective algorithm for discovering fuzzy rules in relational databases
    • Los Alamitos, CA: IEEE Computer Society
    • Au WH, Chan KCC. An effective algorithm for discovering fuzzy rules in relational databases. In: Proc. 1998 IEEE Int Conf on Fuzzy Systems. Los Alamitos, CA: IEEE Computer Society; 1998; pp 1314-1319.
    • (1998) Proc. 1998 IEEE Int Conf on Fuzzy Systems , pp. 1314-1319
    • Au, W.H.1    Chan, K.C.C.2
  • 8
    • 0036850692 scopus 로고    scopus 로고
    • Fuzzy association rules and the extended mining algorithms
    • Chen G, Wei Q. Fuzzy association rules and the extended mining algorithms. Inform Sci 2002;147:201-228.
    • (2002) Inform Sci , vol.147 , pp. 201-228
    • Chen, G.1    Wei, Q.2
  • 9
    • 0002682767 scopus 로고    scopus 로고
    • Fuzzy data mining: Discovery of fuzzy generalized association rules
    • Bordogna G, Pasi G, editors, Heidelberg: Physica-Verlag
    • Chen G, Wei Q, Kerre E. Fuzzy data mining: Discovery of fuzzy generalized association rules. In: Bordogna G, Pasi G, editors, Recent issues on fuzzy databases. Heidelberg: Physica-Verlag; 2000. pp 45-66.
    • (2000) Recent Issues on Fuzzy Databases , pp. 45-66
    • Chen, G.1    Wei, Q.2    Kerre, E.3
  • 10
    • 7544248545 scopus 로고    scopus 로고
    • Mining fuzzy frequent patterns without repeated candidate generation
    • Wang L. Halgamuge S, Yao X, editors. Singapore: Nanyang Technological University
    • Gyenesei A, Teuhola J. Mining fuzzy frequent patterns without repeated candidate generation. In: Wang L. Halgamuge S, Yao X, editors. Proc 1st Int Conf on Fuzzy Systems and Knowledge Discovery. Singapore: Nanyang Technological University; 2002. pp 374-380.
    • (2002) Proc 1st Int Conf on Fuzzy Systems and Knowledge Discovery , pp. 374-380
    • Gyenesei, A.1    Teuhola, J.2
  • 11
    • 0000172008 scopus 로고    scopus 로고
    • Mining association rules from quantitative data
    • Hong TP, Kuo CS, Chi SC. Mining association rules from quantitative data. Intell Data Anal 1999;3:363-376.
    • (1999) Intell Data Anal , vol.3 , pp. 363-376
    • Hong, T.P.1    Kuo, C.S.2    Chi, S.C.3
  • 12
    • 7544244610 scopus 로고    scopus 로고
    • Granulation of quantitative association rules
    • Mazlack LJ. Granulation of quantitative association rules. Int J Fuzzy Syst 2001;3:400-408.
    • (2001) Int J Fuzzy Syst , vol.3 , pp. 400-408
    • Mazlack, L.J.1
  • 13
    • 0033313725 scopus 로고    scopus 로고
    • Mining fuzzy quantitative association rules
    • Los Alamitos, CA: IEEE Computer Society
    • Zhang W. Mining fuzzy quantitative association rules. In: IEEE Int Conf on Tools and Artificial Intelligence. Los Alamitos, CA: IEEE Computer Society; 1999. pp 99-102.
    • (1999) IEEE Int Conf on Tools and Artificial Intelligence , pp. 99-102
    • Zhang, W.1
  • 15
    • 0000559199 scopus 로고    scopus 로고
    • Interestingness-based interval merger for numeric association rules
    • Agrawal R, Stolorz P, Piatetsky-Shapiro G, editors. Menlo Park, CA: AAAI
    • Wang K, Tay SHW, Liu B. Interestingness-based interval merger for numeric association rules. In: Agrawal R, Stolorz P, Piatetsky-Shapiro G, editors. Proc 4th Int Conf on Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI; 1998. pp 121-147.
    • (1998) Proc 4th Int Conf on Knowledge Discovery and Data Mining , pp. 121-147
    • Wang, K.1    Shw, T.2    Liu, B.3
  • 16
    • 0011988594 scopus 로고    scopus 로고
    • Multivariate discretization for set mining
    • Bay SD. Multivariate discretization for set mining. Knowl Inform Syst 2001;3:491-512.
    • (2001) Knowl Inform Syst , vol.3 , pp. 491-512
    • Bay, S.D.1
  • 17
    • 79952944972 scopus 로고    scopus 로고
    • Concurrent discretization of multiple attributes
    • Lee H-Y, Motoda HM, editors. London: Springer-Verlag
    • Wang K, Liu B. Concurrent discretization of multiple attributes, in: Lee H-Y, Motoda HM, editors. Proc 5th Pacific Rim Int Conf on Artificial Intelligence. London: Springer-Verlag; 1998. pp 250-259.
    • (1998) Proc 5th Pacific Rim Int Conf on Artificial Intelligence , pp. 250-259
    • Wang, K.1    Liu, B.2
  • 18
    • 0021392590 scopus 로고
    • The grid file: An adaptable, symmetric multikey file structure
    • Nievergelt J, Hinterberger H. The grid file: An adaptable, symmetric multikey file structure. ACM Trans. Database Syst 1984;9:38-71.
    • (1984) ACM Trans. Database Syst , vol.9 , pp. 38-71
    • Nievergelt, J.1    Hinterberger, H.2
  • 19
    • 7544231843 scopus 로고    scopus 로고
    • Determining fuzzy sets for quantitative attributes in data mining problems
    • Mastorakis N, editor. New York and Athens: World Scientific Engineering Society Press
    • Gyenesei A. Determining fuzzy sets for quantitative attributes in data mining problems. In: Mastorakis N, editor. Advances in Fuzzy Systems and Evolutionary Computation. New York and Athens: World Scientific Engineering Society Press. 2001; pp 48-53.
    • (2001) Advances in Fuzzy Systems and Evolutionary Computation , pp. 48-53
    • Gyenesei, A.1
  • 22
    • 7544248250 scopus 로고
    • Multidimensional binary search trees in database applications
    • Bentley JL. Multidimensional binary search trees in database applications. TFKK Trans on Softw Eng 1979;5:339-353.
    • (1979) TFKK Trans on Softw Eng , vol.5 , pp. 339-353
    • Bentley, J.L.1
  • 24
    • 0005185992 scopus 로고    scopus 로고
    • Knowledge discovery and interestingness measures: A survey
    • University of Regina, Canada
    • Hilderman RJ, Hamilton HJ. Knowledge discovery and interestingness measures: A survey. Technical Report CS 99-04, University of Regina, Canada, 1999.
    • (1999) Technical Report , vol.CS 99-04
    • Hilderman, R.J.1    Hamilton, H.J.2
  • 25
    • 23044529062 scopus 로고    scopus 로고
    • Interestingness measures for fuzzy association rules
    • De Raedt L, Siebes A, editors. New York: Springer
    • Gyenesei A, Teuhola J. Interestingness measures for fuzzy association rules. In: De Raedt L, Siebes A, editors. Principles of data mining and knowledge discovery. New York: Springer; 2001. pp 152-164.
    • (2001) Principles of Data Mining and Knowledge Discovery , pp. 152-164
    • Gyenesei, A.1    Teuhola, J.2
  • 26
    • 7544245643 scopus 로고    scopus 로고
    • U.S. Bureau of the Census, http://staff.cs.utu.fi/~gyenesei/datasets/.
  • 29
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • LeCam LM, Neyman, J, editors. Berkeley, CA: University of California Press
    • MacQueen J. Some methods for classification and analysis of multivariate observations. In: LeCam LM, Neyman, J, editors. 5th Berkeley Symposium on Mathematics, Statistics and Probability. Berkeley, CA: University of California Press; 1967. pp 281-296.
    • (1967) 5th Berkeley Symposium on Mathematics, Statistics and Probability. , pp. 281-296
    • MacQueen, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.