메뉴 건너뛰기




Volumn 15, Issue 3, 2010, Pages 215-222

Performance of combined double seasonal univariate time series models for forecasting water demand

Author keywords

ARIMA; Combined forecasts; Double seasonality; Exponential smoothing; Forecasting; GARCH; Water demand

Indexed keywords

COMBINED FORECASTS; DOUBLE SEASONALITY; EXPONENTIAL SMOOTHING; SEASONALITY; WATER DEMAND;

EID: 77950622616     PISSN: 10840699     EISSN: None     Source Type: Journal    
DOI: 10.1061/(ASCE)HE.1943-5584.0000182     Document Type: Article
Times cited : (81)

References (29)
  • 2
    • 42449156579 scopus 로고
    • Generalized autoregressive conditional heteroskedasticity
    • 10.1016/0304-4076(86)90063-1, 0304-4076.
    • Bollerslev T. Generalized autoregressive conditional heteroskedasticity. J. Econom. 1986, 31:307-327. 10.1016/0304-4076(86)90063-1, 0304-4076.
    • (1986) J. Econom. , vol.31 , pp. 307-327
    • Bollerslev, T.1
  • 3
    • 34848900983 scopus 로고
    • ARCH modeling in finance
    • 10.1016/0304-4076(92)90064-X, 0304-4076.
    • Bollerslev T, Chou R, Kroner K. ARCH modeling in finance. J. Econom. 1992, 52:5-59. 10.1016/0304-4076(92)90064-X, 0304-4076.
    • (1992) J. Econom. , vol.52 , pp. 5-59
    • Bollerslev, T.1    Chou, R.2    Kroner, K.3
  • 4
    • 13644268763 scopus 로고    scopus 로고
    • Short-term municipal water demand forecasting
    • HYPRE3, 0885-6087, 10.1002/hyp.5763.
    • Bougadis J, Adamowski K, Diduch R. Short-term municipal water demand forecasting. Hydrolog. Process. 2005, 19:137-148. HYPRE3, 0885-6087, 10.1002/hyp.5763.
    • (2005) Hydrolog. Process. , vol.19 , pp. 137-148
    • Bougadis, J.1    Adamowski, K.2    Diduch, R.3
  • 6
    • 14944350052 scopus 로고    scopus 로고
    • Weather forecasting for weather derivatives
    • JSTNAL, 0162-1459, 10.1198/016214504000001051.
    • Campbell S, Diebold F. Weather forecasting for weather derivatives. J. Am. Stat. Assoc. 2005, 100:6-16. JSTNAL, 0162-1459, 10.1198/016214504000001051.
    • (2005) J. Am. Stat. Assoc. , vol.100 , pp. 6-16
    • Campbell, S.1    Diebold, F.2
  • 7
    • 33748929857 scopus 로고    scopus 로고
    • Particle swarm optimization training algorithm for ANNs in stage prediction of Shin Mun River
    • JHYDA7, 0022-1694, 10.1016/j.jhydrol.2006.02.025.
    • Chau KW. Particle swarm optimization training algorithm for ANNs in stage prediction of Shin Mun River. J. Hydrol. 2006, 329:363-367. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2006.02.025.
    • (2006) J. Hydrol. , vol.329 , pp. 363-367
    • Chau, K.W.1
  • 8
    • 52949137358 scopus 로고    scopus 로고
    • A new indirect multi-step-ahead prediction model for a long-term hydrologic prediction
    • JHYDA7, 0022-1694, 10.1016/j.jhydrol.2008.07.040.
    • Cheng CT, Xie JX, Chau KW, Layeghifard M. A new indirect multi-step-ahead prediction model for a long-term hydrologic prediction. J. Hydrol. 2008, 361:118-130. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2008.07.040.
    • (2008) J. Hydrol. , vol.361 , pp. 118-130
    • Cheng, C.T.1    Xie, J.X.2    Chau, K.W.3    Layeghifard, M.4
  • 9
    • 45249128876 scopus 로고
    • Combining forecasts: A review and annoted bibliography
    • ZZZZZZ, 0169-2070, 10.1016/0169-2070(89)90012-5.
    • Clemen R. Combining forecasts: A review and annoted bibliography. Int. J. Forecast. 1989, 5:559-583. ZZZZZZ, 0169-2070, 10.1016/0169-2070(89)90012-5.
    • (1989) Int. J. Forecast. , vol.5 , pp. 559-583
    • Clemen, R.1
  • 10
    • 19744362941 scopus 로고    scopus 로고
    • Nonstationary hydrological time series forecasting using nonlinear dynamic methods
    • JHYDA7, 0022-1694, 10.1016/j.jhydrol.2004.10.008.
    • Coulibaly P, Baldwin C. Nonstationary hydrological time series forecasting using nonlinear dynamic methods. J. Hydrol. 2005, 307:164-174. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2004.10.008.
    • (2005) J. Hydrol. , vol.307 , pp. 164-174
    • Coulibaly, P.1    Baldwin, C.2
  • 12
    • 0000051984 scopus 로고
    • Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation
    • ECMTA7, 0012-9682, 10.2307/1912773.
    • Engle R. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 1982, 50:987-1008. ECMTA7, 0012-9682, 10.2307/1912773.
    • (1982) Econometrica , vol.50 , pp. 987-1008
    • Engle, R.1
  • 13
    • 0030651878 scopus 로고    scopus 로고
    • One-day ahead demand forecasting in the utility industries: Two case studies
    • ZZZZZZ, 0160-5682, 10.1057/palgrave.jors.2600320.
    • Fildes R, Randall A, Stubbs P. One-day ahead demand forecasting in the utility industries: Two case studies. J. Oper. Res. Soc. 1997, 48:15-24. ZZZZZZ, 0160-5682, 10.1057/palgrave.jors.2600320.
    • (1997) J. Oper. Res. Soc. , vol.48 , pp. 15-24
    • Fildes, R.1    Randall, A.2    Stubbs, P.3
  • 14
    • 33749523557 scopus 로고    scopus 로고
    • Exponential smoothing: The state of the art-Part II
    • ZZZZZZ, 0169-2070, 10.1016/j.ijforecast.2006.03.005.
    • Gardner E. Exponential smoothing: The state of the art-Part II. Int. J. Forecast. 2006, 22:637-666. ZZZZZZ, 0169-2070, 10.1016/j.ijforecast.2006.03.005.
    • (2006) Int. J. Forecast. , vol.22 , pp. 637-666
    • Gardner, E.1
  • 15
    • 33846813334 scopus 로고    scopus 로고
    • Hybrid neural network models for hydrologic time series forecasting
    • ZZZZZZ, 1568-4946, 10.1016/j.asoc.2006.03.002.
    • Jain A, Kumar AM. Hybrid neural network models for hydrologic time series forecasting. Appl. Soft Comput. 2007, 7:585-592. ZZZZZZ, 1568-4946, 10.1016/j.asoc.2006.03.002.
    • (2007) Appl. Soft Comput. , vol.7 , pp. 585-592
    • Jain, A.1    Kumar, A.M.2
  • 16
    • 0035494446 scopus 로고    scopus 로고
    • Short-term water demand forecast modeling at IIT Kanpur using artificial neural networks
    • WRMAEJ, 0920-4741, 10.1023/A:1014415503476.
    • Jain A, Varshney A, Joshi U. Short-term water demand forecast modeling at IIT Kanpur using artificial neural networks. Water Resour. Manage. 2001, 15:299-321. WRMAEJ, 0920-4741, 10.1023/A:1014415503476.
    • (2001) Water Resour. Manage. , vol.15 , pp. 299-321
    • Jain, A.1    Varshney, A.2    Joshi, U.3
  • 17
    • 38249013323 scopus 로고
    • Analysis and comparison of financial analysts, time series, and combining forecasts of annual earnings
    • JBRED4, 0148-2963, 10.1016/0148-2963(92)90023-5.
    • Lobo G. Analysis and comparison of financial analysts, time series, and combining forecasts of annual earnings. J. Bus. Res. 1992, 24:269-280. JBRED4, 0148-2963, 10.1016/0148-2963(92)90023-5.
    • (1992) J. Bus. Res. , vol.24 , pp. 269-280
    • Lobo, G.1
  • 18
    • 0022739463 scopus 로고
    • Daily water use in nine cities
    • WRERAQ, 0043-1397, 10.1029/WR022i006p00845.
    • Maidment D, Miaou S. Daily water use in nine cities. Water Resour. Res. 1986, 22:845-851. WRERAQ, 0043-1397, 10.1029/WR022i006p00845.
    • (1986) Water Resour. Res. , vol.22 , pp. 845-851
    • Maidment, D.1    Miaou, S.2
  • 19
    • 38249002551 scopus 로고
    • The M2-competition: A real-time judgmentally based forecasting study
    • ZZZZZZ, 0169-2070, 10.1016/0169-2070(93)90044-N.
    • Makridakis S, . The M2-competition: A real-time judgmentally based forecasting study. Int. J. Forecast. 1993, 9:5-22. ZZZZZZ, 0169-2070, 10.1016/0169-2070(93)90044-N.
    • (1993) Int. J. Forecast. , vol.9 , pp. 5-22
    • Makridakis, S.1
  • 20
    • 0020824169 scopus 로고
    • Average of forecasts: Some empirical results
    • MSCIAM, 0025-1909, 10.1287/mnsc.29.9.987.
    • Makridakis S, Winkler R. Average of forecasts: Some empirical results. Manage. Sci. 1983, 29:987-996. MSCIAM, 0025-1909, 10.1287/mnsc.29.9.987.
    • (1983) Manage. Sci. , vol.29 , pp. 987-996
    • Makridakis, S.1    Winkler, R.2
  • 21
    • 0000641348 scopus 로고
    • Conditional heteroskedasticity in asset returns: A new approach
    • ECMTA7, 0012-9682, 10.2307/2938260.
    • Nelson D. Conditional heteroskedasticity in asset returns: A new approach. Econometrica 1991, 59:347-370. ECMTA7, 0012-9682, 10.2307/2938260.
    • (1991) Econometrica , vol.59 , pp. 347-370
    • Nelson, D.1
  • 22
    • 84985846074 scopus 로고
    • Some empirical findings on short-term forecasting: Technique complexity and combinations
    • DESCDQ, 0011-7315, 10.1111/j.1540-5915.1989.tb01572.x.
    • Sanders N, Ritzman L. Some empirical findings on short-term forecasting: Technique complexity and combinations. Decision Sci. 1989, 20:635-640. DESCDQ, 0011-7315, 10.1111/j.1540-5915.1989.tb01572.x.
    • (1989) Decision Sci. , vol.20 , pp. 635-640
    • Sanders, N.1    Ritzman, L.2
  • 23
    • 85006941509 scopus 로고    scopus 로고
    • Rainfall and runoff forecasting with SSA-SVM approach
    • ZZZZZZ, 1464-7141.
    • Sivapragasam C, Liong SY, Pasha MF K. Rainfall and runoff forecasting with SSA-SVM approach. J. Hydroinform. 2001, 3:141-152. ZZZZZZ, 1464-7141.
    • (2001) J. Hydroinform. , vol.3 , pp. 141-152
    • Sivapragasam, C.1    Liong, S.Y.2    Pasha, M.F.K.3
  • 24
    • 0043246006 scopus 로고    scopus 로고
    • Short-term electricity demand forecasting using double seasonal exponential smoothing
    • ZZZZZZ, 0160-5682, 10.1057/palgrave.jors.2601589.
    • Taylor J. Short-term electricity demand forecasting using double seasonal exponential smoothing. J. Oper. Res. Soc. 2003, 54:799-805. ZZZZZZ, 0160-5682, 10.1057/palgrave.jors.2601589.
    • (2003) J. Oper. Res. Soc. , vol.54 , pp. 799-805
    • Taylor, J.1
  • 25
    • 33749526470 scopus 로고    scopus 로고
    • Density forecasting for the efficient balancing of the generation and consumption of electricity
    • ZZZZZZ, 0169-2070, 10.1016/j.ijforecast.2006.02.001.
    • Taylor J. Density forecasting for the efficient balancing of the generation and consumption of electricity. Int. J. Forecast. 2006, 22:707-724. ZZZZZZ, 0169-2070, 10.1016/j.ijforecast.2006.02.001.
    • (2006) Int. J. Forecast. , vol.22 , pp. 707-724
    • Taylor, J.1
  • 26
    • 33845720038 scopus 로고    scopus 로고
    • Non-parametric time series models for hydrological forecasting
    • JHYDA7, 0022-1694, 10.1016/j.jhydrol.2006.07.013.
    • Wong H, Ip W, Zhang R, Xia J. Non-parametric time series models for hydrological forecasting. J. Hydrol. 2007, 332:337-347. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2006.07.013.
    • (2007) J. Hydrol. , vol.332 , pp. 337-347
    • Wong, H.1    Ip, W.2    Zhang, R.3    Xia, J.4
  • 27
    • 47949121319 scopus 로고    scopus 로고
    • River stage prediction based on a distributed support vector regression
    • JHYDA7, 0022-1694, 10.1016/j.jhydrol.2008.05.028.
    • Wu CL, Chau KW, Li YS. River stage prediction based on a distributed support vector regression. J. Hydrol. 2008, 358:96-111. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2008.05.028.
    • (2008) J. Hydrol. , vol.358 , pp. 96-111
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 28
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • JHYDA7, 0022-1694, 10.1016/j.jhydrol.2006.01.021.
    • Yu PS, Chen ST, Chang IF. Support vector regression for real-time flood stage forecasting. J. Hydrol. 2006, 328:704-716. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2006.01.021.
    • (2006) J. Hydrol. , vol.328 , pp. 704-716
    • Yu, P.S.1    Chen, S.T.2    Chang, I.F.3
  • 29
    • 0034734872 scopus 로고    scopus 로고
    • Forecasting daily urban water demand: a case study of Melbourne
    • JHYDA7, 0022-1694, 10.1016/S0022-1694(00)00287-0.
    • Zhou S, McMahon T, Walton A, Lewis J. Forecasting daily urban water demand: a case study of Melbourne. J. Hydrol. 2000, 236:153-164. JHYDA7, 0022-1694, 10.1016/S0022-1694(00)00287-0.
    • (2000) J. Hydrol. , vol.236 , pp. 153-164
    • Zhou, S.1    McMahon, T.2    Walton, A.3    Lewis, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.