메뉴 건너뛰기




Volumn 37, Issue 4, 2010, Pages 1400-1407

Comparison of Bayesian network and support vector machine models for two-year survival prediction in lung cancer patients treated with radiotherapy

Author keywords

Bayesian network; Imputation; Non small cell lung cancer; Probabilistic inference; Survival

Indexed keywords

BAYESIAN NETWORKS; BIOLOGICAL ORGANS; DATA HANDLING; DISEASES; FORECASTING; PATIENT MONITORING; RADIOTHERAPY; SUPPORT VECTOR MACHINES;

EID: 77950565847     PISSN: 00942405     EISSN: None     Source Type: Journal    
DOI: 10.1118/1.3352709     Document Type: Article
Times cited : (84)

References (20)
  • 2
    • 49649098733 scopus 로고    scopus 로고
    • Impact of imputation of missing values on classification error for discrete data
    • 0031-3203,. 10.1016/j.patcog.2008.05.019
    • A. Farhangfar, L. Kurgan, and J. Dy, " Impact of imputation of missing values on classification error for discrete data.," Pattern Recogn. 0031-3203 41, 3692-3705 (2008). 10.1016/j.patcog.2008.05.019
    • (2008) Pattern Recogn. , vol.41 , pp. 3692-3705
    • Farhangfar, A.1    Kurgan, L.2    Dy, J.3
  • 3
    • 27744579949 scopus 로고    scopus 로고
    • Handling missing values in support vector machine classifiers
    • DOI 10.1016/j.neunet.2005.06.025, PII S0893608005001292
    • K. Pelckmans, J. De Brabanter, J. A. Suykens, and B. De Moor, " Handling missing values in support vector machine classifiers.," Neural Networks 0893-6080 18, 684-692 (2005). 10.1016/j.neunet.2005.06.025 (Pubitemid 43186589)
    • (2005) Neural Networks , vol.18 , Issue.5-6 , pp. 684-692
    • Pelckmans, K.1    De Brabanter, J.2    Suykens, J.A.K.3    De Moor, B.4
  • 4
    • 17044362334 scopus 로고    scopus 로고
    • Bayesian networks: Computer-assisted diagnosis support in radiology
    • DOI 10.1016/j.acra.2004.11.030
    • E. S. Burnside, " Bayesian networks: Computer-assisted diagnosis support in radiology.," Acad. Radiol. 1076-6332 12, 422-430 (2005). 10.1016/j.acra.2004.11.030 (Pubitemid 40502898)
    • (2005) Academic Radiology , vol.12 , Issue.4 , pp. 422-430
    • Burnside, E.S.1
  • 5
    • 34548459831 scopus 로고    scopus 로고
    • A primer on learning in Bayesian networks for computational biology
    • DOI 10.1371/journal.pcbi.0030129
    • C. J. Needham, J. R. Bradford, A. J. Bulpitt, and D. R. Westhead, " A primer on learning in Bayesian networks for computational biology.," PLOS Comput. Biol. 1553-734X 3, 1409-1416 (2007). 10.1371/journal.pcbi.0030129 (Pubitemid 47358051)
    • (2007) PLoS Computational Biology , vol.3 , Issue.8 , pp. 1409-1416
    • Needham, C.J.1    Bradford, J.R.2    Bulpitt, A.J.3    Westhead, D.R.4
  • 6
    • 2542433249 scopus 로고    scopus 로고
    • Application of influence diagrams to prostate intensity-modulated radiation therapy plan selection
    • DOI 10.1088/0031-9155/49/9/004, PII S0031915504713925
    • J. Meyer, M. H. Phillips, P. S. Cho, I. Kalet, and J. N. Doctor, " Application of influence diagrams to prostate intensity-modulated radiation therapy plan selection.," Phys. Med. Biol. 0031-9155 49, 1637-1653 (2004). 10.1088/0031-9155/49/9/004 (Pubitemid 38678705)
    • (2004) Physics in Medicine and Biology , vol.49 , Issue.9 , pp. 1637-1653
    • Meyer, J.1    Phillips, M.H.2    Cho, P.S.3    Kalet, I.4    Doctor, J.N.5
  • 7
    • 67349242569 scopus 로고    scopus 로고
    • A decision aid for intensity-modulated radiation-therapy plan selection in prostate cancer based on a prognostic Bayesian network and a Markov model
    • 0933-3657,. 10.1016/j.artmed.2008.12.002
    • W. P. Smith, J. Doctor, J. Meyer, I. J. Kalet, and M. H. Phillips, " A decision aid for intensity-modulated radiation-therapy plan selection in prostate cancer based on a prognostic Bayesian network and a Markov model.," Artif. Intell. Med. 0933-3657 46, 119-130 (2009). 10.1016/j.artmed.2008.12.002
    • (2009) Artif. Intell. Med. , vol.46 , pp. 119-130
    • Smith, W.P.1    Doctor, J.2    Meyer, J.3    Kalet, I.J.4    Phillips, M.H.5
  • 9
    • 34748905317 scopus 로고    scopus 로고
    • Investigation of the support vector machine algorithm to predict lung radiation-induced pneumonitis
    • DOI 10.1118/1.2776669
    • S. Chen, S. Zhou, F. F. Yin, L. B. Marks, and S. K. Das, " Investigation of the support vector machine algorithm to predict lung radiation-induced pneumonitis.," Med. Phys. 0094-2405 34, 3808-3814 (2007). 10.1118/1.2776669 (Pubitemid 47482882)
    • (2007) Medical Physics , vol.34 , Issue.10 , pp. 3808-3814
    • Chen, S.1    Zhou, S.2    Yin, F.-F.3    Marks, L.B.4    Das, S.K.5
  • 10
    • 54949103624 scopus 로고    scopus 로고
    • Combining multiple models to generate consensus: Application to radiation-induced pneumonitis prediction
    • 0094-2405,. 10.1118/1.2996012
    • S. K. Das, S. Chen, J. O. Deasy, S. Zhou, F. F. Yin, and L. B. Marks, " Combining multiple models to generate consensus: Application to radiation-induced pneumonitis prediction.," Med. Phys. 0094-2405 35, 5098-5109 (2008). 10.1118/1.2996012
    • (2008) Med. Phys. , vol.35 , pp. 5098-5109
    • Das, S.K.1    Chen, S.2    Deasy, J.O.3    Zhou, S.4    Yin, F.F.5    Marks, L.B.6
  • 11
    • 71049175420 scopus 로고    scopus 로고
    • Predicting radiotherapy outcomes using statistical learning techniques
    • 0031-9155,. 10.1088/0031-9155/54/18/S02
    • I. El Naqa, J. D. Bradley, P. E. Lindsay, A. J. Hope, and J. O. Deasy, " Predicting radiotherapy outcomes using statistical learning techniques.," Phys. Med. Biol. 0031-9155 54, S9-S30 (2009). 10.1088/0031-9155/54/18/S02
    • (2009) Phys. Med. Biol. , vol.54
    • El Naqa, I.1    Bradley, J.D.2    Lindsay, P.E.3    Hope, A.J.4    Deasy, J.O.5
  • 14
    • 0036384579 scopus 로고    scopus 로고
    • Prognostic factors in non-small cell lung cancer: A decade of progress
    • 0012-3692,. 10.1378/chest.122.3.1037
    • M. D. Brundage, D. Davies, and W. J. Mackillop, " Prognostic factors in non-small cell lung cancer: A decade of progress.," Chest 0012-3692 122, 1037-1057 (2002). 10.1378/chest.122.3.1037
    • (2002) Chest , vol.122 , pp. 1037-1057
    • Brundage, M.D.1    Davies, D.2    MacKillop, W.J.3
  • 16
    • 34247854876 scopus 로고    scopus 로고
    • Prognostic value of fluorodeoxyglucose positron emission tomography in non-small cell lung cancer: A review
    • PII 0124389420060200000009
    • G. Pillot, B. A. Siegel, and R. Govindan, " Prognostic value of fluorodeoxyglucose positron emission tomography in non-small cell lung cancer: A review.," J. Thorac. Oncol. 1, 152-159 (2006). 10.1097/01243894-200602000- 00009 1556-0864 (Pubitemid 47164003)
    • (2006) Journal of Thoracic Oncology , vol.1 , Issue.2 , pp. 152-159
    • Pillot, G.1    Siegel, B.A.2    Govindan, R.3
  • 17
    • 0003229133 scopus 로고    scopus 로고
    • The bayes net toolbox for MATLAB
    • K. P. Murphy, " The Bayes Net Toolbox for MATLAB.," Computing Science and Statistics 33, 1024-1034 (2001).
    • (2001) Computing Science and Statistics , vol.33 , pp. 1024-1034
    • Murphy, K.P.1
  • 18
    • 33646107783 scopus 로고    scopus 로고
    • Large-sample learning of Bayesian networks is NP-hard
    • 1532-4435.
    • D. M. Chickering, D. Heckerman, and C. Meek, " Large-sample learning of Bayesian networks is NP-hard.," J. Mach. Learn. Res. 1532-4435 5, 1287-1330 (2004).
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1287-1330
    • Chickering, D.M.1    Heckerman, D.2    Meek, C.3
  • 20
    • 0242288821 scopus 로고    scopus 로고
    • Finite Newton method for Lagrangian support vector machine classification
    • DOI 10.1016/S0925-2312(03)00379-5
    • G. Fung and O. L. Mangasarian, " Finite Newton method for Lagrangian support vector machine classification.," Neurocomputing 0925-2312 55, 39-55 (2003). 10.1016/S0925-2312(03)00379-5 (Pubitemid 37336669)
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 39-55
    • Fung, G.1    Mangasarian, O.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.