메뉴 건너뛰기




Volumn 54, Issue 18, 2009, Pages

Predicting radiotherapy outcomes using statistical learning techniques

Author keywords

[No Author keywords available]

Indexed keywords

BIVARIATE CORRELATIONS; CLINICAL PRACTICES; COMPLEX INTERACTION; CROSS VALIDATION; DATA SETS; ESOPHAGITIS; INTERACTION TERM; KERNEL METHODS; LEAVE-ONE-OUT; LOGISTIC REGRESSIONS; MODEL VARIABLES; NONLINEAR BEHAVIOR; NONLINEAR INTERACTIONS; NONLINEAR KERNELS; NONLINEAR RELATIONS; OVERFITTING; PRINCIPLE COMPONENTS ANALYSIS; PROGNOSTIC VARIABLES; RELATED VARIABLES; RESAMPLING; RESPONSE FUNCTIONS; STATISTICAL LEARNING; STATISTICAL LEARNING TECHNIQUES; SUPERVISED LEARNING PROBLEMS; TREATMENT RESPONSE; VARIABLE INTERACTION; XEROSTOMIA;

EID: 71049175420     PISSN: 00319155     EISSN: 13616560     Source Type: Journal    
DOI: 10.1088/0031-9155/54/18/S02     Document Type: Article
Times cited : (62)

References (44)
  • 1
    • 33644832185 scopus 로고    scopus 로고
    • Individualized survival curves improve satisfaction with cancer risk management decisions in women with BRCA1/2 mutations
    • Armstrong K, Weber B, Ubel P A, Peters N, Holmes J and Schwartz J S 2005 Individualized survival curves improve satisfaction with cancer risk management decisions in women with BRCA1/2 mutations J. Clin. Oncol. 23 9319-28
    • (2005) J. Clin. Oncol. , vol.23 , Issue.36 , pp. 9319-9328
    • Armstrong, K.1    Weber, B.2    Ubel, P.A.3    Peters, N.4    Holmes, J.5    Schwartz, J.S.6
  • 3
    • 1542376214 scopus 로고    scopus 로고
    • Dosimetric correlates for acute esophagitis in patients treated with radiotherapy for lung carcinoma
    • Bradley J, Deasy J O, Bentzen S and El Naqa I 2004 Dosimetric correlates for acute esophagitis in patients treated with radiotherapy for lung carcinoma Int. J. Radiat. Oncol. Biol. Phys. 58 1106-13
    • (2004) Int. J. Radiat. Oncol. Biol. Phys. , vol.58 , Issue.4 , pp. 1106-1113
    • Bradley, J.1    Deasy, J.O.2    Bentzen, S.3    El Naqa, I.4
  • 4
    • 12844271279 scopus 로고    scopus 로고
    • Toxicity and outcome results of RTOG 9311: A phase I-II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small-cell lung carcinoma
    • Bradley J, Graham M V, Winter K, Purdy J A, Komaki R, Roa W H, Ryu J K, Bosch W and Emami B 2005 Toxicity and outcome results of RTOG 9311: a phase I-II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small-cell lung carcinoma Int. J. Radiat. Oncol. Biol. Phys. 61 318-28
    • (2005) Int. J. Radiat. Oncol. Biol. Phys. , vol.61 , Issue.2 , pp. 318-328
    • Bradley, J.1    Graham, M.V.2    Winter, K.3    Purdy, J.A.4    Komaki, R.5    Roa, W.H.6    Ryu, J.K.7    Bosch, W.8    Emami, B.9
  • 6
    • 0032974943 scopus 로고    scopus 로고
    • Optimized radiation therapy based on radiobiological objectives
    • Brahme A 1999 Optimized radiation therapy based on radiobiological objectives Semin. Radiat. Oncol. 9 35-47
    • (1999) Semin. Radiat. Oncol. , vol.9 , Issue.1 , pp. 35-47
    • Brahme, A.1
  • 7
    • 0035869712 scopus 로고    scopus 로고
    • A prospective study of salivary function sparing in patients with head-and-neck cancers receiving intensity-modulated or three-dimensional radiation therapy: Initial results
    • Chao K S, Deasy J O, Markman J, Haynie J, Perez C A, Purdy J A and Low D A 2001 A prospective study of salivary function sparing in patients with head-and-neck cancers receiving intensity-modulated or three-dimensional radiation therapy: initial results Int. J. Radiat. Oncol. Biol. Phys. 49 907-16
    • (2001) Int. J. Radiat. Oncol. Biol. Phys. , vol.49 , Issue.4 , pp. 907-916
    • Chao, K.S.1    Deasy, J.O.2    Markman, J.3    Haynie, J.4    Perez, C.A.5    Purdy, J.A.6    Low, D.A.7
  • 8
  • 10
    • 0037572347 scopus 로고    scopus 로고
    • CERR: A computational environment for radiotherapy research
    • Deasy J O, Blanco A I and Clark V H 2003 CERR: a computational environment for radiotherapy research Med. Phys. 30 979-85
    • (2003) Med. Phys. , vol.30 , Issue.5 , pp. 979-985
    • Deasy, J.O.1    Blanco, A.I.2    Clark, V.H.3
  • 13
    • 21244444149 scopus 로고    scopus 로고
    • Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy
    • de Crevoisier R, Tucker S L, Dong L, Mohan R, Cheung R, Cox J D and Kuban D A 2005 Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy Int. J. Radiat. Oncol. Biol. Phys. 62 965-73
    • (2005) Int. J. Radiat. Oncol. Biol. Phys. , vol.62 , Issue.4 , pp. 965-973
    • De Crevoisier, R.1    Tucker, S.L.2    Dong, L.3    Mohan, R.4    Cheung, R.5    Cox, J.D.6    Kuban, D.A.7
  • 17
    • 6344285519 scopus 로고    scopus 로고
    • A similarity learning approach to content-based image retrieval: Application to digital mammography
    • El-Naqa I, Yang Y, Galatsanos N P, Nishikawa R M and Wernick M N 2004 A similarity learning approach to content-based image retrieval: application to digital mammography IEEE Trans. Med. Imaging 23 1233-44
    • (2004) IEEE Trans. Med. Imaging , vol.23 , Issue.10 , pp. 1233-1244
    • El-Naqa, I.1    Yang, Y.2    Galatsanos, N.P.3    Nishikawa, R.M.4    Wernick, M.N.5
  • 21
    • 1842527859 scopus 로고    scopus 로고
    • Use of artificial neural networks to predict biological outcomes for patients receiving radical radiotherapy of the prostate
    • Gulliford S L, Webb S, Rowbottom C G, Corne D W and Dearnaley D P 2004 Use of artificial neural networks to predict biological outcomes for patients receiving radical radiotherapy of the prostate Radiother. Oncol. 71 3-12
    • (2004) Radiother. Oncol. , vol.71 , Issue.1 , pp. 3-12
    • Gulliford, S.L.1    Webb, S.2    Rowbottom, C.G.3    Corne, D.W.4    Dearnaley, D.P.5
  • 22
    • 33745561205 scopus 로고    scopus 로고
    • An Introduction to variable and feature selection
    • Guyon I and Elissee A 2003 An Introduction to variable and feature selection J. Mach. Learn. Res. 3 1157-82
    • (2003) J. Mach. Learn. Res. , vol.3 , Issue.7-8 , pp. 1157-1182
    • Guyon, I.1    Elissee, A.2
  • 23
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S and Vapnik V 2002 Gene selection for cancer classification using support vector machines Mach. Learn. 46 389-422
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 28
    • 33846858062 scopus 로고    scopus 로고
    • Clinical, dosimetric, and location-related factors to predict local control in non-small cell lung cancer
    • Hope A J, Lindsay P E, El Naqa I, Bradley J D, Vicic M and Deasy J O 2005 Clinical, dosimetric, and location-related factors to predict local control in non-small cell lung cancer Astro 47th Ann. Meeting (Denver, CO) p S231
    • (2005) Astro 47th Ann. Meeting , pp. 231
    • Hope, A.J.1    Lindsay, P.E.2    El Naqa, I.3    Bradley, J.D.4    Vicic, M.5    Deasy, J.O.6
  • 30
    • 0035889359 scopus 로고    scopus 로고
    • Fitting tumor control probability models to biopsy outcome after three-dimensional conformal radiation therapy of prostate cancer: Pitfalls in deducing radiobiologic parameters for tumors from clinical data
    • Levegrun S, Jackson A, Zelefsky M J, Skwarchuk M W, Venkatraman E S, Schlegel W, Fuks Z, Leibel S A and Ling C C 2001 Fitting tumor control probability models to biopsy outcome after three-dimensional conformal radiation therapy of prostate cancer: Pitfalls in deducing radiobiologic parameters for tumors from clinical data Int. J. Radiat. Oncol. Biol. Phys. 51 1064-80
    • (2001) Int. J. Radiat. Oncol. Biol. Phys. , vol.51 , Issue.4 , pp. 1064-1080
    • Levegrun, S.1    Jackson, A.2    Zelefsky, M.J.3    Skwarchuk, M.W.4    Venkatraman, E.S.5    Schlegel, W.6    Fuks, Z.7    Leibel, S.A.8    Ling, C.C.9
  • 31
    • 0036805478 scopus 로고    scopus 로고
    • Dosimetric predictors of radiation-induced lung injury
    • Marks L B 2002 Dosimetric predictors of radiation-induced lung injury Int. J. Radiat. Oncol. Biol. Phys. 54 313-6
    • (2002) Int. J. Radiat. Oncol. Biol. Phys. , vol.54 , Issue.2 , pp. 313-316
    • Marks, L.B.1
  • 32
    • 0016772212 scopus 로고
    • Comparison of the predicted and observed secondary structure of T4 phage lysozyme
    • Matthews B W 1975 Comparison of the predicted and observed secondary structure of T4 phage lysozyme Biochim. Biophys. Acta 405 442-51
    • (1975) Biochim. Biophys. Acta , vol.405 , pp. 442-451
    • Matthews, B.W.1
  • 35
    • 0037378596 scopus 로고    scopus 로고
    • Molecular markers of outcome after radiotherapy in patients with prostate carcinoma: Ki-67, bcl-2, bax and bcl-x
    • Pollack A, Cowen D, Troncoso P, Zagars G K, von Eschenbach A C, Meistrich M L and McDonnell T 2003 Molecular markers of outcome after radiotherapy in patients with prostate carcinoma: Ki-67, bcl-2, bax and bcl-x Cancer 97 1630-8
    • (2003) Cancer , vol.97 , Issue.7 , pp. 1630-1638
    • Pollack, A.1    Cowen, D.2    Troncoso, P.3    Zagars, G.K.4    Von Eschenbach, A.C.5    Meistrich, M.L.6    McDonnell, T.7
  • 36
    • 84890447445 scopus 로고    scopus 로고
    • Variable selection using SVM-based criteria
    • Rakotomamonjy A 2003 Variable selection using SVM-based criteria J. Mach. Learn. Res. 3 1357-70
    • (2003) J. Mach. Learn. Res. , vol.3 , Issue.7-8 , pp. 1357-1370
    • Rakotomamonjy, A.1
  • 39
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht D F 1991 A general regression neural network IEEE Trans. Neural Netw. 2 568-76
    • (1991) IEEE Trans. Neural Netw. , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 40
    • 67650898266 scopus 로고    scopus 로고
    • Bioinformatics methods for learning radiation-induced lung inflammation from heterogeneous retrospective and prospective data
    • Spencer S J, Bonnin D Almiron, Deasy J O, Bradley J D and El Naqa I 2009 Bioinformatics methods for learning radiation-induced lung inflammation from heterogeneous retrospective and prospective data J. Biomed. Biotechnol. 2009 892863
    • (2009) J. Biomed. Biotechnol. , vol.2009 , pp. 892863
    • Spencer, S.J.1    Almiron, B.D.2    Deasy, J.O.3    Bradley, J.D.4    El Naqa, I.5
  • 41
    • 14644395498 scopus 로고    scopus 로고
    • An artificial neural network for predicting the incidence of radiation pneumonitis
    • Su M, Miften M, Whiddon C, Sun X, Light K and Marks L 2005 An artificial neural network for predicting the incidence of radiation pneumonitis Med. Phys. 32 318-25
    • (2005) Med. Phys. , vol.32 , Issue.2 , pp. 318-325
    • Su, M.1    Miften, M.2    Whiddon, C.3    Sun, X.4    Light, K.5    Marks, L.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.