-
1
-
-
46749147927
-
Exploiting QSAR models in lead optimization
-
Gedeck, P.; Lewis, R.A. Exploiting QSAR models in lead optimization. Curr. Opin. Drug Dis. Dev., 2008, 11, 569-575.
-
(2008)
Curr. Opin. Drug Dis. Dev.
, vol.11
, pp. 569-575
-
-
Gedeck, P.1
Lewis, R.A.2
-
2
-
-
36749036846
-
Regression methods for developing QSAR and QSPR models to predict compounds of specific pharmacodynamic, pharmacokinetic and toxicological properties
-
Yap, C.W.; Li, H.; Ji, Z.L.; Chen, Y.Z. Regression methods for developing QSAR and QSPR models to predict compounds of specific pharmacodynamic, pharmacokinetic and toxicological properties. Mini-Rev. Med. Chem., 2007, 7, 1097-1107.
-
(2007)
Mini-Rev. Med. Chem.
, vol.7
, pp. 1097-1107
-
-
Yap, C.W.1
Li, H.2
Ji, Z.L.3
Chen, Y.Z.4
-
3
-
-
67049158574
-
Current mathematical methods used in QSAR/QSPR studies
-
Liu, P.; Long, W. Current mathematical methods used in QSAR/QSPR studies. Int. J. Mol. Sci., 2009, 10, 1978-1998.
-
(2009)
Int. J. Mol. Sci.
, vol.10
, pp. 1978-1998
-
-
Liu, P.1
Long, W.2
-
4
-
-
77950522337
-
Advanced PLS techniques in chemometrics and their applications to molecular design
-
Lodhi, H.; Yamanishi, Y.; Eds., IGI publishing, (in press).
-
Hasegawa, K.; Funatsu, K. Advanced PLS techniques in chemometrics and their applications to molecular design. In Chemoinformatics and Advanced Machine Learning Perspectives: Complex Computational Methods and Collaborative Techniques; Lodhi, H.; Yamanishi, Y.; Eds., IGI publishing, 2009 (in press).
-
(2009)
Chemoinformatics and Advanced Machine Learning Perspectives: Complex Computational Methods and Collaborative Techniques
-
-
Hasegawa, K.1
Funatsu, K.2
-
5
-
-
37249038567
-
Nonlinear SVM approaches to QSPR/QSAR studies and drug design
-
DOI 10.2174/157340907782799372
-
Doucet, J.-P.; Barbault, F.; Xia, H.; Panaye, A.; Fan, B. Non-linear SVM approaches to QSPR/QSAR studies and drug design. Curr. Comput.-Aided Drug Design, 2007, 3, 263-289. (Pubitemid 350268174)
-
(2007)
Current Computer-Aided Drug Design
, vol.3
, Issue.4
, pp. 263-289
-
-
Doucet, J.-P.1
Barbault, F.2
Xia, H.3
Panaye, A.4
Fan, B.5
-
6
-
-
58149203252
-
Support vector machines and its applications in chemistry
-
Li, H.; Liang, Y.; Xu, Q. Support vector machines and its applications in chemistry. Chemom. Intell. Lab. Syst., 2009, 95,188-198.
-
(2009)
Chemom. Intell. Lab. Syst.
, vol.95
, pp. 188-198
-
-
Li, H.1
Liang, Y.2
Xu, Q.3
-
7
-
-
56049095031
-
On the interpretation and interpretability of quantitative structure-activity relationship models
-
Guha, R. On the interpretation and interpretability of quantitative structure-activity relationship models. J. Comput.-Aided Mol. Des., 2008, 22, 857-871.
-
(2008)
J. Comput.-Aided Mol. Des.
, vol.22
, pp. 857-871
-
-
Guha, R.1
-
8
-
-
1842676969
-
-
Moody, J.E.; Hanson, S.J.; Lippmann, R.P.; Eds.; Morgan Kaufmann Publishers Inc.; San Francisco
-
Vapnik, V. In Advances in Neural Information Processing Systems; Moody, J.E.; Hanson, S.J.; Lippmann, R.P.; Eds.; Morgan Kaufmann Publishers Inc.; San Francisco, 1992.
-
(1992)
Advances in Neural Information Processing Systems
-
-
Vapnik, V.1
-
9
-
-
0034740222
-
Drug design by machine learning: Support vector machines for pharmaceutical data analysis
-
Burbidge, R.; Trotter, M.; Buxton, B.; Holden, S. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput. Chem., 2001, 26, 5-14.
-
(2001)
Comput. Chem.
, vol.26
, pp. 5-14
-
-
Burbidge, R.1
Trotter, M.2
Buxton, B.3
Holden, S.4
-
10
-
-
66249095188
-
Virtual screening for cytochromes P450: Successes of machine learning filters
-
Burton, J.; Ijjaali, I.; Petitet, F.; Michel, A.; Vercauteren, D.P.; Virtual screening for cytochromes P450: successes of machine learning filters. Comb. Chem. HTS., 2009, 12, 369-382.
-
(2009)
Comb. Chem. HTS.
, vol.12
, pp. 369-382
-
-
Burton, J.1
Ijjaali, I.2
Petitet, F.3
Michel, A.4
Vercauteren, D.P.5
-
11
-
-
58149099516
-
In silico functional profiling of small molecules and its applications
-
Sato, T.; Matsuo, Y.; Honma, T.; Yokoyama, S.; In silico functional profiling of small molecules and its applications. J. Med. Chem., 2008, 25, 7705-7716.
-
(2008)
J. Med. Chem.
, vol.25
, pp. 7705-7716
-
-
Sato, T.1
Matsuo, Y.2
Honma, T.3
Yokoyama, S.4
-
12
-
-
33644845063
-
Facilitating the application of Support Vector Regression by using a universal Pearson VII function based kernel
-
Uestuen, B.; Melssen, W.J.; Buydens, L.M.C. Facilitating the application of Support Vector Regression by using a universal Pearson VII function based kernel. Chemom. Intell. Lab. Syst., 2006, 81, 29-40.
-
(2006)
Chemom. Intell. Lab. Syst.
, vol.81
, pp. 29-40
-
-
Uestuen, B.1
Melssen, W.J.2
Buydens, L.M.C.3
-
13
-
-
34848814078
-
Support Vector Machines for Prediction of Mechanism of Toxic Action from Multivariate Classification of Phenols Based on MEDV Descriptors
-
Yi, Z.-S.; Liu, S.-S. Support Vector Machines for Prediction of Mechanism of Toxic Action from Multivariate Classification of Phenols Based on MEDV Descriptors. Int. Elect. J. Mol. Des., 2005, 4, 835-849.
-
(2005)
Int. Elect. J. Mol. Des.
, vol.4
, pp. 835-849
-
-
Yi, Z.-S.1
Liu, S.-S.2
-
14
-
-
0036505670
-
A comparison of methods for multiclass support vector machines
-
DOI 10.1109/72.991427, PII S1045922702018052
-
Hsu, C.W.; Lin, C.J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw, 2002, 13, 415-425. (Pubitemid 34475042)
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.2
, pp. 415-425
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
15
-
-
84888364466
-
Large margin DAGs for multiclass classication
-
Platt, J.C.; Cristianini, N; Shawe-Taylor, J. Large margin DAGs for multiclass classication. Adv. Neural Inform. Process. Syst., 2000, 12, 547-553.
-
(2000)
Adv. Neural Inform. Process. Syst.
, vol.12
, pp. 547-553
-
-
Platt, J.C.1
Cristianini, N.2
Shawe-Taylor, J.3
-
16
-
-
37249047989
-
The recent trend in QSAR modeling - Variable selection and 3D-QSAR methods
-
DOI 10.2174/157340907782799417
-
Arakawa, M.; Hasegawa, K.; Funatsu, K. The recent trend in QSAR modeling - variable selection and 3D-QSAR methods. Curr. Comput.-Aided Drug Design, 2007, 3, 254-262. (Pubitemid 350268173)
-
(2007)
Current Computer-Aided Drug Design
, vol.3
, Issue.4
, pp. 254-262
-
-
Arakawa, M.1
Hasegawa, K.2
Funatsu, K.3
-
17
-
-
17844411481
-
Feature selection in quantitative structure-activity relationships
-
Walters, W.P.; Goldman, B.B. Feature selection in quantitative structure-activity relationships. Curr. Opin. Drug Dis. Dev., 2005, 8, 329-333.
-
(2005)
Curr. Opin. Drug Dis. Dev.
, vol.8
, pp. 329-333
-
-
Walters, W.P.1
Goldman, B.B.2
-
18
-
-
31444453160
-
Prediction of the tissue/blood partition coefficients of organic compounds based on the molecular structure using least-squares support vector machines
-
Liu, H.X.; Yao, X.J.; Zhang, R.S.; Liu, M.C.; Hu, Z.D.; Fan, B.T. Prediction of the tissue/blood partition coefficients of organic compounds based on the molecular structure using least-squares support vector machines. J. Comput.-Aided Mol. Des., 2005, 19,499-508.
-
(2005)
J. Comput.-Aided Mol. Des.
, vol.19
, pp. 499-508
-
-
Liu, H.X.1
Yao, X.J.2
Zhang, R.S.3
Liu, M.C.4
Hu, Z.D.5
Fan, B.T.6
-
19
-
-
69349104350
-
Ant colony optimization as a feature selection method in the QSAR modeling of anti-HIV-1 activities of 3-(3, 5-dimethylbenzyl) uracil derivatives using MLR, PLS and SVM regressions
-
Goodarzi, M.; Freitas, M.; Jenssen, R. Ant colony optimization as a feature selection method in the QSAR modeling of anti-HIV-1 activities of 3-(3, 5-dimethylbenzyl) uracil derivatives using MLR, PLS and SVM regressions. Chemom. Intell. Lab. Syst., 2009, 98,123-129.
-
(2009)
Chemom. Intell. Lab. Syst.
, vol.98
, pp. 123-129
-
-
Goodarzi, M.1
Freitas, M.2
Jenssen, R.3
-
20
-
-
57749099023
-
Prediction of the logarithmic of partition coefficients (log P) of some organic compounds by least square-support vector machine (LS-SVM)
-
Goodarzi, N.; Goodarzi, M. Prediction of the logarithmic of partition coefficients (log P) of some organic compounds by least square-support vector machine (LS-SVM). Mol. Phys., 2008, 106,2525-2535.
-
(2008)
Mol. Phys.
, vol.106
, pp. 2525-2535
-
-
Goodarzi, N.1
Goodarzi, M.2
-
21
-
-
34248590967
-
Quantitative structure-activity relationship study of acyl ureas as inhibitors of human liver glycogen phosphorylase using least squares support vector machines
-
DOI 10.1016/j.chemolab.2006.11.004, PII S0169743906002243
-
Li, J.; Liu, H.; Yao, X.; Liu, M.; Hu, Z.; Fan, B. Quantitative structure-activity relationship study of acyl ureas as inhibitors of human liver glycogen phosphorylase using least squares support vector machines. Chemom. Intell. Lab. Syst., 2007, 87, 139-146. (Pubitemid 46755412)
-
(2007)
Chemometrics and Intelligent Laboratory Systems
, vol.87
, Issue.2
, pp. 139-146
-
-
Li, J.1
Liu, H.2
Yao, X.3
Liu, M.4
Hu, Z.5
Fan, B.6
-
22
-
-
0035150169
-
Use of support vector machine in pattern classification: Application to QSAR studies
-
DOI 10.1002/1521-3838(200110)20:3<227::AID-QSAR227>3.0.CO;2-Y
-
Czerminski, R.; Yasri, A.; Hartsough, D. Use of support vector machine in pattern classification: application to QSAR studies. QSAR, 2001, 20, 227-240. (Pubitemid 33051752)
-
(2001)
Quantitative Structure-Activity Relationships
, vol.20
, Issue.3
, pp. 227-240
-
-
Czermiski, R.1
Yasri, A.2
Hartsough, D.3
-
23
-
-
31944435042
-
QSAR study of polychlorinated dibenzodioxins, dibenzofurans, and biphenyls using the heuristic method and support vector machine
-
Luan, F.; Ma, W.P.; Zhang, X.Y.; Zhang, H.X.; Liu, M.C.; Hu, Z.D.; Fan, B.T. QSAR study of polychlorinated dibenzodioxins, dibenzofurans, and biphenyls using the heuristic method and support vector machine. QSAR Comb. Sci., 2006, 25, 46-55.
-
(2006)
QSAR Comb. Sci.
, vol.25
, pp. 46-55
-
-
Luan, F.1
Ma, W.P.2
Zhang, X.Y.3
Zhang, H.X.4
Liu, M.C.5
Hu, Z.D.6
Fan, B.T.7
-
24
-
-
31944443335
-
Comparative study of factor Xa inhibitors using molecular docking/SVM/HQSAR/3D-QSAR methods
-
DOI 10.1002/qsar.200530115
-
Sun, J.; Chen, H.F.; Xia, H.R.; Yao, J.H.; Fan, B.T. Comparative Study of Factor Xa Inhibitors Using Molecular Docking/SVM/HQSAR/3D-QSAR Methods. QSAR Comb. Sci., 2006, 25, 25-45. (Pubitemid 43189606)
-
(2006)
QSAR and Combinatorial Science
, vol.25
, Issue.1
, pp. 25-45
-
-
Sun, J.1
Chen, H.F.2
Xia, H.R.3
Yao, J.H.4
Fan, B.T.5
-
25
-
-
62749144448
-
QSAR models for 2-amino-6-arylsulfonylbenzonitriles and congeners HIV-1 reverse transcriptase inhibitors based on linear and non-linear regression methods
-
Hu, R.; Doucet, J.-P.; Delamar, M.; Zhang, R. QSAR models for 2-amino-6-arylsulfonylbenzonitriles and congeners HIV-1 reverse transcriptase inhibitors based on linear and non-linear regression methods. Eur. J. Med. Chem., 2009, 44, 2158-2171.
-
(2009)
Eur. J. Med. Chem.
, vol.44
, pp. 2158-2171
-
-
Hu, R.1
Doucet, J.-P.2
Delamar, M.3
Zhang, R.4
-
26
-
-
65549140680
-
Local and novel consensus quantitative structure-activity relationship studies of 4-(Phenylaminomethylene) isoquinoline-1, 3 (2H, 4H)-diones as potent inhibitors of the cyclin-dependent kinase 4
-
Lei, B.; Xi, L.; Li, J.; Liu, H.; Yao, X. Global, local and novel consensus quantitative structure-activity relationship studies of 4-(Phenylaminomethylene) isoquinoline-1, 3 (2H, 4H)-diones as potent inhibitors of the cyclin-dependent kinase 4. Anal. Chim Acta, 2009, 644, 17-24.
-
(2009)
Anal. Chim Acta
, vol.644
, pp. 17-24
-
-
Lei, B.1
Xi, L.2
Li, J.3
Liu, H.4
Global, Y.X.5
-
27
-
-
34250682210
-
Study on the structure-activity relationship of new anti-hiv nucleoside derivatives based on the support vector machine method
-
Wang, J.; Liu, H.; Qin, S.; Yao, X.; Liu, M.; Hu, Z.; Fan, B. Study on the structure-activity relationship of new anti-hiv nucleoside derivatives based on the support vector machine method. QSAR Comb.Sci., 2007, 26, 161-172.
-
(2007)
QSAR Comb.Sci.
, vol.26
, pp. 161-172
-
-
Wang, J.1
Liu, H.2
Qin, S.3
Yao, X.4
Liu, M.5
Hu, Z.6
Fan, B.7
-
28
-
-
33751536091
-
Structure-activity relationship study of oxindole-based inhibitors of cyclin-dependent kinases based on least-squares support vector machines
-
Li, J.; Liu, H.; Yao, X.; Liu, M.; Hu, Z.; Fan, B. Structure-activity relationship study of oxindole-based inhibitors of cyclin-dependent kinases based on least-squares support vector machines. Anal. Chima Acta, 2007, 581, 333-342.
-
(2007)
Anal. Chima Acta
, vol.581
, pp. 333-342
-
-
Li, J.1
Liu, H.2
Yao, X.3
Liu, M.4
Hu, Z.5
Fan, B.6
-
29
-
-
67649872793
-
QSAR studies on imidazothienopyrazines as IKK-beta inhibitors: From 2D to 3D
-
Long, W.; Liu, P.; Li, X.; Xu, Y.; Yu, J.; Ma, S.; Yu, L.; Zou, Z. QSAR studies on imidazothienopyrazines as IKK-beta inhibitors: from 2D to 3D. J. Chemom., 2009, 23, 304-314.
-
(2009)
J. Chemom.
, vol.23
, pp. 304-314
-
-
Long, W.1
Liu, P.2
Li, X.3
Xu, Y.4
Yu, J.5
Ma, S.6
Yu, L.7
Zou, Z.8
-
30
-
-
24644503995
-
QSAR study of natural, synthetic and environmental endocrine disrupting compounds for binding to the androgen receptor
-
Zhao, C.Y.; Zhang, R.S.; Zhang, H.X.; Xue, C.X.; Liu, H.X.; Liu, M.C.; Hu, Z.D.; Fan, B.T. QSAR study of natural, synthetic and environmental endocrine disrupting compounds for binding to the androgen receptor. SAR QSAR. Environ. Res. 2005, 16, 349-367.
-
(2005)
SAR QSAR. Environ. Res.
, vol.16
, pp. 349-367
-
-
Zhao, C.Y.1
Zhang, R.S.2
Zhang, H.X.3
Xue, C.X.4
Liu, H.X.5
Liu, M.C.6
Hu, Z.D.7
Fan, B.T.8
-
31
-
-
67949091195
-
Classification of Src Kinase Inhibitors Based on Support Vector Machine
-
Zhu, J.; Lu, W.; Liu, L.; Gu, T.; Niu, B. Classification of Src Kinase Inhibitors Based on Support Vector Machine. QSAR Comb. Sci., 2009, 6-7, 719-727.
-
(2009)
QSAR Comb. Sci.
, vol.6-7
, pp. 719-727
-
-
Zhu, J.1
Lu, W.2
Liu, L.3
Gu, T.4
Niu, B.5
-
32
-
-
44449153017
-
Support vector machines classification of hERG liabilities based on atom types
-
Jia, L.; Sun, H. Support vector machines classification of hERG liabilities based on atom types. Bioorg. Med. Chem., 2008, 16, 6252-6260.
-
(2008)
Bioorg. Med. Chem.
, vol.16
, pp. 6252-6260
-
-
Jia, L.1
Sun, H.2
-
33
-
-
61349156692
-
Support vector machines (SVM) in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation
-
Devos, O.; Ruckebush, C.; Durand, A.; Duponchel, L.; Huvenne, J.-P. Support vector machines (SVM) in near infrared (NIR) spectroscopy: focus on parameters optimization and model interpretation. Chemom. Intell. Lab. Syst., 2009, 96, 27-33.
-
(2009)
Chemom. Intell. Lab. Syst.
, vol.96
, pp. 27-33
-
-
Devos, O.1
Ruckebush, C.2
Durand, A.3
Duponchel, L.4
Huvenne, J.-P.5
-
34
-
-
85030413794
-
Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis
-
DOI 10.1109/TCBB.2007.1028
-
Tang, Y., Zhang, Y.-Q.; Huang, Z. Development of Two-Stage SVM-RFE Gene Selection Strategy for Microarray Expression Data Analysis. IEEE Trans. Comput. Bio. Bioinf., 2007, 4, 365-381. (Pubitemid 47274713)
-
(2007)
IEEE/ACM Transactions on Computational Biology and Bioinformatics
, vol.4
, Issue.3
, pp. 365-381
-
-
Tang, Y.1
Zhang, Y.-Q.2
Huang, Z.3
-
35
-
-
54749109964
-
Analysis of metabolomic data using support vector machines
-
Mahadevan, S.; Shah, S.L.; Marrie, T.J.; Slupsky, C.M. Analysis of metabolomic data using support vector machines. Anal. Chem., 2008, 80, 7562-7570.
-
(2008)
Anal. Chem.
, vol.80
, pp. 7562-7570
-
-
Mahadevan, S.1
Shah, S.L.2
Marrie, T.J.3
Slupsky, C.M.4
-
36
-
-
34249855141
-
MSVM-RFE: Extensions of SVM-RFE for multiclass gene selection on DNA microarray data
-
DOI 10.1093/bioinformatics/btm036
-
Zhou, X.; Tuck, D.P. MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data. Bioinformatics, 2007, 23, 1106-1114. (Pubitemid 47050562)
-
(2007)
Bioinformatics
, vol.23
, Issue.9
, pp. 1106-1114
-
-
Zhou, X.1
Tuck, D.P.2
-
37
-
-
33947324308
-
Improving the performance of SVM-RFE to select genes in microarray data
-
DOI 10.1186/1471-2105-7-S2-S12
-
Ding, Y.; Wilkins, D. Improving the performance of SVM-RFE to select genes in microarray data. BMC Bioinf., 2006, 7, S12. (Pubitemid 46442967)
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.SUPPL. 2
-
-
Ding, Y.1
Wilkins, D.2
-
38
-
-
4043091303
-
Prediction of P-glycoprotein substrates by a support vector machine approach
-
Xue, Y.; Yap, C.W.; Sun, L.Z., Cao, Z.W.; Wang, J.F.; Chen, Y.Z. Prediction of P-glycoprotein substrates by a support vector machine approach. J. Chem. Inf. Comput. Sci., 2004, 44, 1497-1505.
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, pp. 1497-1505
-
-
Xue, Y.1
Yap, C.W.2
Sun, L.Z.3
Cao, Z.W.4
Wang, J.F.5
Chen, Y.Z.6
-
39
-
-
33750982700
-
Prediction of estrogen receptor agonists and characterization of associated molecular descriptors by statistical learning methods
-
Li, H.; Ung, C.Y.; Yap, C.W.; Xue, Y.; Li, Z.R.; Chen, Y.Z. Prediction of estrogen receptor agonists and characterization of associated molecular descriptors by statistical learning methods. J. Mol. Graph. Model., 2006, 25, 313-323.
-
(2006)
J. Mol. Graph. Model.
, vol.25
, pp. 313-323
-
-
Li, H.1
Ung, C.Y.2
Yap, C.W.3
Xue, Y.4
Li, Z.R.5
Chen, Y.Z.6
-
40
-
-
5444272497
-
Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents
-
Xue, Y.; Li, Z.R.; Yap, C.W.; Sun, L.Z.; Chen, X.; Chen, Y.Z. Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents. J. Chem. Inf. Comput. Sci., 2004, 44, 1630-1638.
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, pp. 1630-1638
-
-
Xue, Y.1
Li, Z.R.2
Yap, C.W.3
Sun, L.Z.4
Chen, X.5
Chen, Y.Z.6
-
41
-
-
33748104432
-
Application of support vector machines to in silico prediction of cytochrome P450 enzyme substrates and inhibitors
-
Yap, C.W.; Xue, Y.; Li, Z.R.; Chen, Y.Z. Application of support vector machines to in silico prediction of cytochrome P450 enzyme substrates and inhibitors. Curr. Top. Med. Chem., 2006, 6, 1593-1607.
-
(2006)
Curr. Top. Med. Chem.
, vol.6
, pp. 1593-1607
-
-
Yap, C.W.1
Xue, Y.2
Li, Z.R.3
Chen, Y.Z.4
-
42
-
-
55249101966
-
Identifying hERG potassium channel inhibitors by machine learning methods
-
Wang, M.; Yang, X.-G.; Xue, Y. Identifying hERG potassium channel inhibitors by machine learning methods. QSAR Comb. Sci., 2008, 27, 1028-1035.
-
(2008)
QSAR Comb. Sci.
, vol.27
, pp. 1028-1035
-
-
Wang, M.1
Yang, X.-G.2
Xue, Y.3
-
43
-
-
34548349206
-
Prediction of factor Xa inhibitors by machine learning methods
-
DOI 10.1016/j.jmgm.2007.03.003, PII S1093326307000587
-
Liu, H.H.; Han, L.Y.; Yap, C.W.; Xue, Y.; Liu, X.H.; Zhu, F.; Chen, Y.Z. Prediction of factor Xa inhibitors by machine learning methods. J. Mol. Graph. Model., 2007, 26, 505-518. (Pubitemid 47342474)
-
(2007)
Journal of Molecular Graphics and Modelling
, vol.26
, Issue.2
, pp. 505-518
-
-
Lin, H.H.1
Han, L.Y.2
Yap, C.W.3
Xue, Y.4
Liu, X.H.5
Zhu, F.6
Chen, Y.Z.7
-
44
-
-
34250676530
-
Recursive Cluster Elimination (RCE) for classification and feature selection from gene expression data
-
Youset, M.; Jung, S.; Showe, L.C.; Showe, M.I. Recursive Cluster Elimination (RCE) for classification and feature selection from gene expression data. BMC Bioinf., 2007, 8, 144-155.
-
(2007)
BMC Bioinf.
, vol.8
, pp. 144-155
-
-
Youset, M.1
Jung, S.2
Showe, L.C.3
Showe, M.I.4
-
45
-
-
35348816323
-
A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine
-
DOI 10.1016/j.bmc.2007.08.057, PII S0968089607007675
-
Fatemi, M.H.; Gharaghani, S. A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine. Bioorg. Med. Chem., 2007, 15, 7746-7754. (Pubitemid 47575917)
-
(2007)
Bioorganic and Medicinal Chemistry
, vol.15
, Issue.24
, pp. 7746-7754
-
-
Fatemi, M.H.1
Gharaghani, S.2
-
46
-
-
67650075324
-
New hybrid genetic based support vector regression as qsar approach for analyzing flavonoids-GABA(A) complexes
-
Goodarzi, M.; Duchowicz, P.R.; Wu, C.H.; Fernandez, F.M.; Castro, E.A. New hybrid genetic based support vector regression as qsar approach for analyzing flavonoids-GABA(A) complexes. J. Chem. Inf. Model., 2009, 49, 1475-1485.
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 1475-1485
-
-
Goodarzi, M.1
Duchowicz, P.R.2
Wu, C.H.3
Fernandez, F.M.4
Castro, E.A.5
-
47
-
-
66149104557
-
QSPR study of n-octanol/water partition coefficient of some aromatic compounds using support vector regression
-
Yang, S.-S.; Lu, W.-C.; Gu, T.-H.; Yan, L.-M.; Li, G.-Z. QSPR study of n-octanol/water partition coefficient of some aromatic compounds using support vector regression. QSAR Comb. Sci., 2009, 28, 175-182.
-
(2009)
QSAR Comb. Sci.
, vol.28
, pp. 175-182
-
-
Yang, S.-S.1
Lu, W.-C.2
Gu, T.-H.3
Yan, L.-M.4
Li, G.-Z.5
-
48
-
-
67349205580
-
Three-class classification models of logS and logP derived by using GA-CG-SVM approach
-
Zhang, H.; Xiang, M.-L.; Ma, C.-Y.; Huang, Q.; Li, W.; Xie, Y.; Wei, Y.-Q.; Yang, S.-Y. Three-class classification models of logS and logP derived by using GA-CG-SVM approach. Mol. Diversity, 2009, 13, 261-268.
-
(2009)
Mol. Diversity
, vol.13
, pp. 261-268
-
-
Zhang, H.1
Xiang, M.-L.2
Ma, C.-Y.3
Huang, Q.4
Li, W.5
Xie, Y.6
Wei, Y.-Q.7
Yang, S.-Y.8
-
49
-
-
44749088791
-
Prediction models of human plasma protein binding rate and oral bioavailability derived by using GA-CG-SVM method
-
Ma, C.-Y.; Yang, S.-Y.; Zhang, H.; Xiang, M.-Li; Huang, Q.; Wei, Y.-Q. Prediction models of human plasma protein binding rate and oral bioavailability derived by using GA-CG-SVM method. J. Pharm. Biomed. Anal., 2008, 47, 677-682.
-
(2008)
J. Pharm. Biomed. Anal.
, vol.47
, pp. 677-682
-
-
Ma, C.-Y.1
Yang, S.-Y.2
Zhang, H.3
Xiang, M.-L.4
Huang, Q.5
Wei, Y.-Q.6
-
50
-
-
59549104238
-
Support vector machine and pharmacophore-based prediction models of multidrug-resistance protein 2 (MRP2) inhibitors
-
Zhang, H.; Xiang, M.-L.; Zhao, Y.-L.; Wei, Y.-Q., Yang, S.-Y. Support vector machine and pharmacophore-based prediction models of multidrug-resistance protein 2 (MRP2) inhibitors. Eur. J. Pharm. Sci., 2009, 36, 451-457.
-
(2009)
Eur. J. Pharm. Sci.
, vol.36
, pp. 451-457
-
-
Zhang, H.1
Xiang, M.-L.2
Zhao, Y.-L.3
Wei, Y.-Q.4
Yang, S.-Y.5
-
51
-
-
33749384342
-
Comparison of methods for chemical-compound affinity prediction
-
DOI 10.1080/10629360600934168, PII N83653076PL30616
-
Koike, A. Comparison of methods for chemical-compound affinity prediction. SAR QSAR. Env. Res., 2006, 17, 497-514. (Pubitemid 44507094)
-
(2006)
SAR and QSAR in Environmental Research
, vol.17
, Issue.5
, pp. 497-514
-
-
Koike, A.1
-
52
-
-
33746333526
-
A QSAR study of avian oral toxicity using support vector machines and genetic algorithms
-
DOI 10.1002/qsar.200530189
-
Mazzatorta, P.; Cronin, M.T.D.; Benfenati, E. A QSAR study of avian oral toxicity using support vector machines and genetic algorithms. QSAR Comb. Sci., 2006, 25, 616-628. (Pubitemid 44113878)
-
(2006)
QSAR and Combinatorial Science
, vol.25
, Issue.7
, pp. 616-628
-
-
Mazzatorta, P.1
Cronin, M.T.D.2
Benfenati, E.3
-
53
-
-
34250898040
-
QSAR study of antimicrobial activity of some 3-nitrocoumarins and related compounds
-
DOI 10.1021/ci600473z
-
Debeljak, Z.; Skrbo, A.; Jasprica, I.; Mornar, A.; Plecko, V.; Banjanac, M.; Medic-Saric, M. QSAR study of antimicrobial activity of some 3-nitrocoumarins and related compounds. J. Chem. Inf. Model., 2007, 47, 918-926. (Pubitemid 46973706)
-
(2007)
Journal of Chemical Information and Modeling
, vol.47
, Issue.3
, pp. 918-926
-
-
Debeljak, Z.1
Skrbo, A.2
Jasprica, I.3
Mornar, A.4
Plecko, V.5
Banjanac, M.6
Medic-Saric, M.7
-
54
-
-
50549087952
-
Proteometric modeling of protein conformational stability using amino acid sequence autocorrelation vectors and genetic algorithmoptimized support vector machines
-
Fernandez, M.; Fernandez, L.; Sanchez, P.; Caballero, J.; Abreu, J.I. Proteometric modeling of protein conformational stability using amino acid sequence autocorrelation vectors and genetic algorithmoptimized support vector machines. Mol. Simulat., 2008, 34, 857-872.
-
(2008)
Mol. Simulat.
, vol.34
, pp. 857-872
-
-
Fernandez, M.1
Fernandez, L.2
Sanchez, P.3
Caballero, J.4
Abreu, J.I.5
-
55
-
-
42749090642
-
Classification of voltage-gated K+ ion channels from 3D pseudofolding graph representation of protein sequences using genetic algorithm-optimized support vector machines
-
Fernandez, M.; Fernandez, L.; Abreu, J.I.; Garriiga, M. Classification of voltage-gated K+ ion channels from 3D pseudofolding graph representation of protein sequences using genetic algorithm-optimized support vector machines. J. Mol. Graph. Model., 2008, 26, 1306-1314.
-
(2008)
J. Mol. Graph. Model.
, vol.26
, pp. 1306-1314
-
-
Fernandez, M.1
Fernandez, L.2
Abreu, J.I.3
Garriiga, M.4
-
56
-
-
34548379115
-
ESVM: Evolutionary support vector machine for automatic feature selection and classification of microarray data
-
DOI 10.1016/j.biosystems.2006.12.003, PII S0303264706002875
-
Huang, H.-L.; Chang, F.-L. ESVM: Evolutionary support vector machine for automatic feature selection and classification of microarray data. Biosystems, 2007, 90, 516-528. (Pubitemid 47362467)
-
(2007)
BioSystems
, vol.90
, Issue.2
, pp. 516-528
-
-
Huang, H.-L.1
Chang, F.-L.2
-
57
-
-
57649213892
-
Simultaneous feature selection and parameter optimisation using an artificial ant colony: Case study of melting point prediction
-
O'Boyle, N.M.; Palmer, D.S.; Nigsch, F.; Mitchell, J.B.O. Simultaneous feature selection and parameter optimisation using an artificial ant colony: case study of melting point prediction. Chem. Central J., 2008, 2, 21-35.
-
(2008)
Chem. Central J.
, vol.2
, pp. 21-35
-
-
O'Boyle, N.M.1
Palmer, D.S.2
Nigsch, F.3
Mitchell, J.B.O.4
-
58
-
-
34547663158
-
Identifying P-glycoprotein substrates using a support vector machine optimized by a particle SWarm
-
DOI 10.1021/ci700083n
-
Huang, J.; Ma, G.; Muhammad, I.; Cheng, Y. Identifying Pglycoprotein substrates using a support vector machine optimized by a particle swarm. J. Chem. Inf. Model., 2007, 47, 1638-1647. (Pubitemid 47210067)
-
(2007)
Journal of Chemical Information and Modeling
, vol.47
, Issue.4
, pp. 1638-1647
-
-
Huang, J.1
Ma, G.2
Muhammad, I.3
Cheng, Y.4
-
59
-
-
43849098929
-
Tailored scoring function of Trypsin-benzamidine complex using COMBINE descriptors and support vector regression
-
Arakawa, M.; Hasegawa, K.; Funatsu, K. Tailored scoring function of Trypsin-benzamidine complex using COMBINE descriptors and support vector regression. Chemom. Intell. Lab. Syst., 2008, 92,145-151.
-
(2008)
Chemom. Intell. Lab. Syst.
, vol.92
, pp. 145-151
-
-
Arakawa, M.1
Hasegawa, K.2
Funatsu, K.3
-
60
-
-
70349789336
-
Application of data mining to quantitative structure-activity relationship using rough set theory
-
Hasegawa, K.; Koyama, M.; Arakawa, M.; Funatsu, K. Application of data mining to quantitative structure-activity relationship using rough set theory. Chemom. Intell. Lab. Syst., 2009, 99, 66-70.
-
(2009)
Chemom. Intell. Lab. Syst.
, vol.99
, pp. 66-70
-
-
Hasegawa, K.1
Koyama, M.2
Arakawa, M.3
Funatsu, K.4
-
61
-
-
2942702317
-
SVM-based feature selection for characterization of focused compound collections
-
Byvatov, E.; Schneider, G. SVM-based feature selection for characterization of focused compound collections. J. Chem. Inf. Model., 2004, 44, 993-999.
-
(2004)
J. Chem. Inf. Model.
, vol.44
, pp. 993-999
-
-
Byvatov, E.1
Schneider, G.2
-
62
-
-
27444433232
-
Extraction and visualization of potential pharmacophore points using support vector machines: Application to ligand-based virtual screening for COX-2 inhibitors
-
DOI 10.1021/jm050619h
-
Franke, L.; Byvatov, E.; Werz, O.; Steinhilber, D.; Schneider, P.; Schneider G. Extraction and visualization of potential pharmacophore points using support vector machines: application to ligand-based virtual screening for COX-2 inhibitors. J. Med. Chem., 2005, 48, 6997-7004. (Pubitemid 41533121)
-
(2005)
Journal of Medicinal Chemistry
, vol.48
, Issue.22
, pp. 6997-7004
-
-
Franke, L.1
Byvatov, E.2
Werz, O.3
Steinhilber, D.4
Schneider, P.5
Schneider, G.6
-
63
-
-
34250690497
-
A virtual screening filter for identification of cytochrome P450 2C9 (CYP2C9) inhibitors
-
DOI 10.1002/qsar.200630143
-
Byvatov, E.; Baringhaus, K.-H.; Schneider, G.; Matter, H. A virtual screening filter for identification of cytochrome P450 2C9 (CYP2C9) inhibitors. QSAR Comb. Sci., 2007, 5, 618-628. (Pubitemid 46932851)
-
(2007)
QSAR and Combinatorial Science
, vol.26
, Issue.5
, pp. 618-628
-
-
Byvatov, E.1
Baringhaus, K.-H.2
Schneider, G.3
Matter, H.4
-
64
-
-
69549105991
-
New variable selection method using interval segmentation purity with application to blockwise kernel transform support vector machine classification of high-dimensional microarray data
-
Tang, L.-J.; Du, W.; Fu, H.-Y.; Jiang, J.-H.; Wu, H.-L.; Shen, G.-L.; Yu, R.-Q. New variable selection method using interval segmentation purity with application to blockwise kernel transform support vector machine classification of high-dimensional microarray data. J. Chem. Inf. Model., 2009, 49, 2002-2009.
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 2002-2009
-
-
Tang, L.-J.1
Du, W.2
Fu, H.-Y.3
Jiang, J.-H.4
Wu, H.-L.5
Shen, G.-L.6
Yu, R.-Q.7
-
65
-
-
67651230187
-
Computational mapping tools for drug discovery
-
Ivanenkov, Y.A.; Savchuk, N.P.; Ekins, S.; Balakin, K.V. Computational mapping tools for drug discovery. DDT, 2009, 14,767-775.
-
(2009)
DDT
, vol.14
, pp. 767-775
-
-
Ivanenkov, Y.A.1
Savchuk, N.P.2
Ekins, S.3
Balakin, K.V.4
-
66
-
-
65249097454
-
Visualization of the chemical space in drug discovery
-
Medina-Franco, J.L.; Martinez-Mayorga, K.; Giulianotti, M.A.; Houghten, R.A.; Pinilla, C. Visualization of the chemical space in drug discovery. Curr. Comput.-Aided Drug Design, 2008, 4, 322-333.
-
(2008)
Curr. Comput.-Aided Drug Design
, vol.4
, pp. 322-333
-
-
Medina-Franco, J.L.1
Martinez-Mayorga, K.2
Giulianotti, M.A.3
Houghten, R.A.4
Pinilla, C.5
-
67
-
-
84925560039
-
Development of druglikeness model and its visualization
-
Arakawa, M.; Miyao, T.; Funatsu, K. Development of druglikeness model and its visualization. J. Comput.-Aided Chem., 2008, 9, 70-80.
-
(2008)
J. Comput.-Aided Chem.
, vol.9
, pp. 70-80
-
-
Arakawa, M.1
Miyao, T.2
Funatsu, K.3
-
68
-
-
84870992765
-
Data Modeling and Chemical Interpretation of ADME Properties Using Regression and Rule Mining Techniques
-
Gary, W.C.; Ed., Bentham Science Publisher
-
Hasegawa, K.; Funatsu, K. Data Modeling and Chemical Interpretation of ADME Properties Using Regression and Rule Mining Techniques. In Frontier in Drug Design & Discovery, Gary, W.C.; Ed., Bentham Science Publisher, 2009, 4, 378-428.
-
(2009)
Frontier in Drug Design & Discovery
, vol.4
, pp. 378-428
-
-
Hasegawa, K.1
Funatsu, K.2
-
69
-
-
0347963789
-
GTM: The generative topographic mapping
-
Bishop, C.M.; Svensen, M.; Williams, C.K.I. GTM: the generative topographic mapping. Neural Comput., 1998, 10, 215-234.
-
(1998)
Neural Comput.
, vol.10
, pp. 215-234
-
-
Bishop, C.M.1
Svensen, M.2
Williams, C.K.I.3
-
70
-
-
34250882118
-
Visualisation and interpretation of Support Vector Regression models
-
DOI 10.1016/j.aca.2007.03.023, PII S0003267007004904
-
Ustun, B.; Melssen, W.J.; Buydens, L.M.C. Visualisation and interpretation of Support Vector Regression models. Anal. Chim. Acta, 2007, 595, 299-309. (Pubitemid 46990301)
-
(2007)
Analytica Chimica Acta
, vol.595
, Issue.1-2 SPEC. ISS
, pp. 299-309
-
-
Ustun, B.1
Melssen, W.J.2
Buydens, L.M.C.3
-
71
-
-
41549092817
-
Nonlinear support vector machine visualization for risk factor analysis using nomograms and localized radial basis function kernels
-
Cho, B.H.; Yu, H.; Lee, J.; Chee, Y.J.; Kim, I.Y.; Kim, S.I. Nonlinear support vector machine visualization for risk factor analysis using nomograms and localized radial basis function kernels. IEEE Trans. Inf. Technol. Biomed., 2008, 12, 247-256.
-
(2008)
IEEE Trans. Inf. Technol. Biomed.
, vol.12
, pp. 247-256
-
-
Cho, B.H.1
Yu, H.2
Lee, J.3
Chee, Y.J.4
Kim, I.Y.5
Kim, S.I.6
-
72
-
-
37649025659
-
Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods
-
Cho, B.H.; Yu, H.; Kim, K.-W.; Kim, T.H.; Kim, I.Y.; Kim, S.I. Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods. Artificial Intell. Med., 2008, 42, 37-53.
-
(2008)
Artificial Intell. Med.
, vol.42
, pp. 37-53
-
-
Cho, B.H.1
Yu, H.2
Kim, K.-W.3
Kim, T.H.4
Kim, I.Y.5
Kim, S.I.6
-
73
-
-
0036827078
-
Prediction of protein retention times in anion-exchange chromatography systems using support vector regression
-
DOI 10.1021/ci025580t
-
Song, M.; Breneman, C.M.; Bi, J.; Sukumar, N.; Bennett, K.P.; Cramer, S.; Tugcu, N. Prediction of protein retention times in anion-exchange chromatography systems using support vector regression. J. Chem. Inf. Comput. Sci., 2002, 42, 1347-1357. (Pubitemid 35468322)
-
(2002)
Journal of Chemical Information and Computer Sciences
, vol.42
, Issue.6
, pp. 1347-1357
-
-
Song, M.1
Breneman, C.M.2
Bi, J.3
Sukumar, N.4
Bennett, K.P.5
Cramer, S.6
Tugcu, N.7
-
74
-
-
67649784530
-
Critical comparative analysis, validation and interpretation of SVM and PLS regression models in a QSAR study on HIV-1 protease inhibitors
-
Hernandez, N.; Kiralj, R.; Ferreira, M.M.C.; Talavera, I. Critical comparative analysis, validation and interpretation of SVM and PLS regression models in a QSAR study on HIV-1 protease inhibitors. Chemom. Intell. Lab. Syst., 2009, 98, 65-77.
-
(2009)
Chemom. Intell. Lab. Syst.
, vol.98
, pp. 65-77
-
-
Hernandez, N.1
Kiralj, R.2
Ferreira, M.M.C.3
Talavera, I.4
-
75
-
-
61349156692
-
Support vector machines (SVM) in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation
-
Devos, O.; Ruckebusch C.; Durand, A.; Duponchel, L.; Huvenne, J.-P. Support vector machines (SVM) in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation. Chemom. Intell. Lab. Syst., 2009, 96, 27-33.
-
(2009)
Chemom. Intell. Lab. Syst.
, vol.96
, pp. 27-33
-
-
Devos, O.1
Ruckebusch, C.2
Durand, A.3
Duponchel, L.4
Huvenne, J.-P.5
-
76
-
-
35848947985
-
Tagged fragment method for evolutionary structure-based de novo lead generation and optimization
-
DOI 10.1021/jm070750k
-
Liu, Q.; Masek, B.; Smith, K.; Smith, J. Tagged fragment method for evolutionary structure-based de novo lead generation and optimization. J. Med Chem. 2007, 50, 5392-5402. (Pubitemid 350057850)
-
(2007)
Journal of Medicinal Chemistry
, vol.50
, Issue.22
, pp. 5392-5402
-
-
Liu, Q.1
Masek, B.2
Smith, K.3
Smith, J.4
-
77
-
-
66149089880
-
A novel in silico approach to drug discovery via computational intelligence
-
Hecht, D; Fogel, G.B. A novel in silico approach to drug discovery via computational intelligence. J. Chem. Inf. Model., 2009, 49, 1105-1121.
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 1105-1121
-
-
Hecht, D.1
Fogel, G.B.2
-
78
-
-
85014036693
-
Inverse QSAR study using evolutionary algorithm
-
Hasegawa, K.; Kimura, T.; Funatsu, K. Inverse QSAR study using evolutionary algorithm. J. Comput.-Aided Chem., 2009, 10, 10-15.
-
(2009)
J. Comput.-Aided Chem.
, vol.10
, pp. 10-15
-
-
Hasegawa, K.1
Kimura, T.2
Funatsu, K.3
-
79
-
-
0001224048
-
Sparse Bayesian Learning and the Relevance Vector Machine
-
DOI 10.1162/15324430152748236
-
Tipping, M.E. Sparse bayesian learning and the relevance vector machine. J. Machine Learning Res. 2001, 1, 211-244. (Pubitemid 33687203)
-
(2001)
Journal of Machine Learning Research
, vol.1
, Issue.3
, pp. 211-244
-
-
Tipping, M.E.1
-
80
-
-
70349584934
-
Robustified least squares support vector classification
-
Debruyne, M.; Serneels, S.; Verdonck, T. Robustified least squares support vector classification. J. Chemom., 2009, 23, 479-486.
-
(2009)
J. Chemom.
, vol.23
, pp. 479-486
-
-
Debruyne, M.1
Serneels, S.2
Verdonck, T.3
-
81
-
-
69349092894
-
Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR
-
Cui, W.; Yan, X. Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR. Chemom. Intell. Lab. Syst., 2009, 98, 130-135.
-
(2009)
Chemom. Intell. Lab. Syst.
, vol.98
, pp. 130-135
-
-
Cui, W.1
Yan, X.2
-
82
-
-
33646849614
-
Boosting support vector regression in QSAR studies of bioactivities of chemical compounds
-
Zhou, Y.-P.; Jiang, J.-H.; Lin, W.-Q.; Zou, H.-Y.; Wu, H.-L.; Shen, G.-L.; Yu, R.-Q.; Boosting support vector regression in QSAR studies of bioactivities of chemical compounds. Eur. J. Pharm. Sci., 2006, 28, 344-353.
-
(2006)
Eur. J. Pharm. Sci.
, vol.28
, pp. 344-353
-
-
Zhou, Y.-P.1
Jiang, J.-H.2
Lin, W.-Q.3
Zou, H.-Y.4
Wu, H.-L.5
Shen, G.-L.6
Yu, R.-Q.7
-
83
-
-
54249156505
-
Molecule kernels: A descriptor- And alignment-free quantitative structure-activity relationship approach
-
Mohr, J.A.; Jain, B.J.; Obermayer, K. Molecule kernels: a descriptor- and alignment-free quantitative structure-activity relationship approach. J. Chem. Inf. Model., 2008, 48, 1868-1881.
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 1868-1881
-
-
Mohr, J.A.1
Jain, B.J.2
Obermayer, K.3
-
84
-
-
33646246986
-
Kernel functions for attributed molecular graphs - A new similarity-based approach to ADME prediction in classification and regression
-
Frohlich H.; Wegner, J.K.; Sieker, F.; Zell, A. Kernel functions for attributed molecular graphs - a new similarity-based approach to ADME prediction in classification and regression. QSAR Comb. Sci., 2006, 25, 317-326.
-
(2006)
QSAR Comb. Sci.
, vol.25
, pp. 317-326
-
-
Frohlich, H.1
Wegner, J.K.2
Sieker, F.3
Zell, A.4
-
85
-
-
52749085437
-
Protein-ligand interaction prediction: An improved chemogenomics approach
-
Jacob, L.; Vert, J.-P. Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics, 2008, 24, 2149-2156.
-
(2008)
Bioinformatics
, vol.24
, pp. 2149-2156
-
-
Jacob, L.1
Vert, J.-P.2
|