메뉴 건너뛰기




Volumn 6, Issue 1, 2010, Pages 24-36

Non-linear modeling and chemical interpretation with aid of support vector machine and regression

Author keywords

Chemical interpretation; De novo design; Kernel; Non linear modeling; SVM; SVR; Variable selection; Visualization

Indexed keywords

COMPUTATIONAL CHEMISTRY; MODEL STRUCTURES; MOLECULAR GRAPHICS; NONLINEAR SYSTEMS; REGRESSION ANALYSIS;

EID: 77950527156     PISSN: 15734099     EISSN: None     Source Type: Journal    
DOI: 10.2174/157340910790980124     Document Type: Review
Times cited : (32)

References (85)
  • 1
    • 46749147927 scopus 로고    scopus 로고
    • Exploiting QSAR models in lead optimization
    • Gedeck, P.; Lewis, R.A. Exploiting QSAR models in lead optimization. Curr. Opin. Drug Dis. Dev., 2008, 11, 569-575.
    • (2008) Curr. Opin. Drug Dis. Dev. , vol.11 , pp. 569-575
    • Gedeck, P.1    Lewis, R.A.2
  • 2
    • 36749036846 scopus 로고    scopus 로고
    • Regression methods for developing QSAR and QSPR models to predict compounds of specific pharmacodynamic, pharmacokinetic and toxicological properties
    • Yap, C.W.; Li, H.; Ji, Z.L.; Chen, Y.Z. Regression methods for developing QSAR and QSPR models to predict compounds of specific pharmacodynamic, pharmacokinetic and toxicological properties. Mini-Rev. Med. Chem., 2007, 7, 1097-1107.
    • (2007) Mini-Rev. Med. Chem. , vol.7 , pp. 1097-1107
    • Yap, C.W.1    Li, H.2    Ji, Z.L.3    Chen, Y.Z.4
  • 3
    • 67049158574 scopus 로고    scopus 로고
    • Current mathematical methods used in QSAR/QSPR studies
    • Liu, P.; Long, W. Current mathematical methods used in QSAR/QSPR studies. Int. J. Mol. Sci., 2009, 10, 1978-1998.
    • (2009) Int. J. Mol. Sci. , vol.10 , pp. 1978-1998
    • Liu, P.1    Long, W.2
  • 5
    • 37249038567 scopus 로고    scopus 로고
    • Nonlinear SVM approaches to QSPR/QSAR studies and drug design
    • DOI 10.2174/157340907782799372
    • Doucet, J.-P.; Barbault, F.; Xia, H.; Panaye, A.; Fan, B. Non-linear SVM approaches to QSPR/QSAR studies and drug design. Curr. Comput.-Aided Drug Design, 2007, 3, 263-289. (Pubitemid 350268174)
    • (2007) Current Computer-Aided Drug Design , vol.3 , Issue.4 , pp. 263-289
    • Doucet, J.-P.1    Barbault, F.2    Xia, H.3    Panaye, A.4    Fan, B.5
  • 6
    • 58149203252 scopus 로고    scopus 로고
    • Support vector machines and its applications in chemistry
    • Li, H.; Liang, Y.; Xu, Q. Support vector machines and its applications in chemistry. Chemom. Intell. Lab. Syst., 2009, 95,188-198.
    • (2009) Chemom. Intell. Lab. Syst. , vol.95 , pp. 188-198
    • Li, H.1    Liang, Y.2    Xu, Q.3
  • 7
    • 56049095031 scopus 로고    scopus 로고
    • On the interpretation and interpretability of quantitative structure-activity relationship models
    • Guha, R. On the interpretation and interpretability of quantitative structure-activity relationship models. J. Comput.-Aided Mol. Des., 2008, 22, 857-871.
    • (2008) J. Comput.-Aided Mol. Des. , vol.22 , pp. 857-871
    • Guha, R.1
  • 8
    • 1842676969 scopus 로고
    • Moody, J.E.; Hanson, S.J.; Lippmann, R.P.; Eds.; Morgan Kaufmann Publishers Inc.; San Francisco
    • Vapnik, V. In Advances in Neural Information Processing Systems; Moody, J.E.; Hanson, S.J.; Lippmann, R.P.; Eds.; Morgan Kaufmann Publishers Inc.; San Francisco, 1992.
    • (1992) Advances in Neural Information Processing Systems
    • Vapnik, V.1
  • 9
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • Burbidge, R.; Trotter, M.; Buxton, B.; Holden, S. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput. Chem., 2001, 26, 5-14.
    • (2001) Comput. Chem. , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 10
    • 66249095188 scopus 로고    scopus 로고
    • Virtual screening for cytochromes P450: Successes of machine learning filters
    • Burton, J.; Ijjaali, I.; Petitet, F.; Michel, A.; Vercauteren, D.P.; Virtual screening for cytochromes P450: successes of machine learning filters. Comb. Chem. HTS., 2009, 12, 369-382.
    • (2009) Comb. Chem. HTS. , vol.12 , pp. 369-382
    • Burton, J.1    Ijjaali, I.2    Petitet, F.3    Michel, A.4    Vercauteren, D.P.5
  • 11
    • 58149099516 scopus 로고    scopus 로고
    • In silico functional profiling of small molecules and its applications
    • Sato, T.; Matsuo, Y.; Honma, T.; Yokoyama, S.; In silico functional profiling of small molecules and its applications. J. Med. Chem., 2008, 25, 7705-7716.
    • (2008) J. Med. Chem. , vol.25 , pp. 7705-7716
    • Sato, T.1    Matsuo, Y.2    Honma, T.3    Yokoyama, S.4
  • 12
    • 33644845063 scopus 로고    scopus 로고
    • Facilitating the application of Support Vector Regression by using a universal Pearson VII function based kernel
    • Uestuen, B.; Melssen, W.J.; Buydens, L.M.C. Facilitating the application of Support Vector Regression by using a universal Pearson VII function based kernel. Chemom. Intell. Lab. Syst., 2006, 81, 29-40.
    • (2006) Chemom. Intell. Lab. Syst. , vol.81 , pp. 29-40
    • Uestuen, B.1    Melssen, W.J.2    Buydens, L.M.C.3
  • 13
    • 34848814078 scopus 로고    scopus 로고
    • Support Vector Machines for Prediction of Mechanism of Toxic Action from Multivariate Classification of Phenols Based on MEDV Descriptors
    • Yi, Z.-S.; Liu, S.-S. Support Vector Machines for Prediction of Mechanism of Toxic Action from Multivariate Classification of Phenols Based on MEDV Descriptors. Int. Elect. J. Mol. Des., 2005, 4, 835-849.
    • (2005) Int. Elect. J. Mol. Des. , vol.4 , pp. 835-849
    • Yi, Z.-S.1    Liu, S.-S.2
  • 14
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • DOI 10.1109/72.991427, PII S1045922702018052
    • Hsu, C.W.; Lin, C.J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw, 2002, 13, 415-425. (Pubitemid 34475042)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 16
    • 37249047989 scopus 로고    scopus 로고
    • The recent trend in QSAR modeling - Variable selection and 3D-QSAR methods
    • DOI 10.2174/157340907782799417
    • Arakawa, M.; Hasegawa, K.; Funatsu, K. The recent trend in QSAR modeling - variable selection and 3D-QSAR methods. Curr. Comput.-Aided Drug Design, 2007, 3, 254-262. (Pubitemid 350268173)
    • (2007) Current Computer-Aided Drug Design , vol.3 , Issue.4 , pp. 254-262
    • Arakawa, M.1    Hasegawa, K.2    Funatsu, K.3
  • 17
    • 17844411481 scopus 로고    scopus 로고
    • Feature selection in quantitative structure-activity relationships
    • Walters, W.P.; Goldman, B.B. Feature selection in quantitative structure-activity relationships. Curr. Opin. Drug Dis. Dev., 2005, 8, 329-333.
    • (2005) Curr. Opin. Drug Dis. Dev. , vol.8 , pp. 329-333
    • Walters, W.P.1    Goldman, B.B.2
  • 18
    • 31444453160 scopus 로고    scopus 로고
    • Prediction of the tissue/blood partition coefficients of organic compounds based on the molecular structure using least-squares support vector machines
    • Liu, H.X.; Yao, X.J.; Zhang, R.S.; Liu, M.C.; Hu, Z.D.; Fan, B.T. Prediction of the tissue/blood partition coefficients of organic compounds based on the molecular structure using least-squares support vector machines. J. Comput.-Aided Mol. Des., 2005, 19,499-508.
    • (2005) J. Comput.-Aided Mol. Des. , vol.19 , pp. 499-508
    • Liu, H.X.1    Yao, X.J.2    Zhang, R.S.3    Liu, M.C.4    Hu, Z.D.5    Fan, B.T.6
  • 19
    • 69349104350 scopus 로고    scopus 로고
    • Ant colony optimization as a feature selection method in the QSAR modeling of anti-HIV-1 activities of 3-(3, 5-dimethylbenzyl) uracil derivatives using MLR, PLS and SVM regressions
    • Goodarzi, M.; Freitas, M.; Jenssen, R. Ant colony optimization as a feature selection method in the QSAR modeling of anti-HIV-1 activities of 3-(3, 5-dimethylbenzyl) uracil derivatives using MLR, PLS and SVM regressions. Chemom. Intell. Lab. Syst., 2009, 98,123-129.
    • (2009) Chemom. Intell. Lab. Syst. , vol.98 , pp. 123-129
    • Goodarzi, M.1    Freitas, M.2    Jenssen, R.3
  • 20
    • 57749099023 scopus 로고    scopus 로고
    • Prediction of the logarithmic of partition coefficients (log P) of some organic compounds by least square-support vector machine (LS-SVM)
    • Goodarzi, N.; Goodarzi, M. Prediction of the logarithmic of partition coefficients (log P) of some organic compounds by least square-support vector machine (LS-SVM). Mol. Phys., 2008, 106,2525-2535.
    • (2008) Mol. Phys. , vol.106 , pp. 2525-2535
    • Goodarzi, N.1    Goodarzi, M.2
  • 21
    • 34248590967 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship study of acyl ureas as inhibitors of human liver glycogen phosphorylase using least squares support vector machines
    • DOI 10.1016/j.chemolab.2006.11.004, PII S0169743906002243
    • Li, J.; Liu, H.; Yao, X.; Liu, M.; Hu, Z.; Fan, B. Quantitative structure-activity relationship study of acyl ureas as inhibitors of human liver glycogen phosphorylase using least squares support vector machines. Chemom. Intell. Lab. Syst., 2007, 87, 139-146. (Pubitemid 46755412)
    • (2007) Chemometrics and Intelligent Laboratory Systems , vol.87 , Issue.2 , pp. 139-146
    • Li, J.1    Liu, H.2    Yao, X.3    Liu, M.4    Hu, Z.5    Fan, B.6
  • 22
    • 0035150169 scopus 로고    scopus 로고
    • Use of support vector machine in pattern classification: Application to QSAR studies
    • DOI 10.1002/1521-3838(200110)20:3<227::AID-QSAR227>3.0.CO;2-Y
    • Czerminski, R.; Yasri, A.; Hartsough, D. Use of support vector machine in pattern classification: application to QSAR studies. QSAR, 2001, 20, 227-240. (Pubitemid 33051752)
    • (2001) Quantitative Structure-Activity Relationships , vol.20 , Issue.3 , pp. 227-240
    • Czermiski, R.1    Yasri, A.2    Hartsough, D.3
  • 23
    • 31944435042 scopus 로고    scopus 로고
    • QSAR study of polychlorinated dibenzodioxins, dibenzofurans, and biphenyls using the heuristic method and support vector machine
    • Luan, F.; Ma, W.P.; Zhang, X.Y.; Zhang, H.X.; Liu, M.C.; Hu, Z.D.; Fan, B.T. QSAR study of polychlorinated dibenzodioxins, dibenzofurans, and biphenyls using the heuristic method and support vector machine. QSAR Comb. Sci., 2006, 25, 46-55.
    • (2006) QSAR Comb. Sci. , vol.25 , pp. 46-55
    • Luan, F.1    Ma, W.P.2    Zhang, X.Y.3    Zhang, H.X.4    Liu, M.C.5    Hu, Z.D.6    Fan, B.T.7
  • 24
    • 31944443335 scopus 로고    scopus 로고
    • Comparative study of factor Xa inhibitors using molecular docking/SVM/HQSAR/3D-QSAR methods
    • DOI 10.1002/qsar.200530115
    • Sun, J.; Chen, H.F.; Xia, H.R.; Yao, J.H.; Fan, B.T. Comparative Study of Factor Xa Inhibitors Using Molecular Docking/SVM/HQSAR/3D-QSAR Methods. QSAR Comb. Sci., 2006, 25, 25-45. (Pubitemid 43189606)
    • (2006) QSAR and Combinatorial Science , vol.25 , Issue.1 , pp. 25-45
    • Sun, J.1    Chen, H.F.2    Xia, H.R.3    Yao, J.H.4    Fan, B.T.5
  • 25
    • 62749144448 scopus 로고    scopus 로고
    • QSAR models for 2-amino-6-arylsulfonylbenzonitriles and congeners HIV-1 reverse transcriptase inhibitors based on linear and non-linear regression methods
    • Hu, R.; Doucet, J.-P.; Delamar, M.; Zhang, R. QSAR models for 2-amino-6-arylsulfonylbenzonitriles and congeners HIV-1 reverse transcriptase inhibitors based on linear and non-linear regression methods. Eur. J. Med. Chem., 2009, 44, 2158-2171.
    • (2009) Eur. J. Med. Chem. , vol.44 , pp. 2158-2171
    • Hu, R.1    Doucet, J.-P.2    Delamar, M.3    Zhang, R.4
  • 26
    • 65549140680 scopus 로고    scopus 로고
    • Local and novel consensus quantitative structure-activity relationship studies of 4-(Phenylaminomethylene) isoquinoline-1, 3 (2H, 4H)-diones as potent inhibitors of the cyclin-dependent kinase 4
    • Lei, B.; Xi, L.; Li, J.; Liu, H.; Yao, X. Global, local and novel consensus quantitative structure-activity relationship studies of 4-(Phenylaminomethylene) isoquinoline-1, 3 (2H, 4H)-diones as potent inhibitors of the cyclin-dependent kinase 4. Anal. Chim Acta, 2009, 644, 17-24.
    • (2009) Anal. Chim Acta , vol.644 , pp. 17-24
    • Lei, B.1    Xi, L.2    Li, J.3    Liu, H.4    Global, Y.X.5
  • 27
    • 34250682210 scopus 로고    scopus 로고
    • Study on the structure-activity relationship of new anti-hiv nucleoside derivatives based on the support vector machine method
    • Wang, J.; Liu, H.; Qin, S.; Yao, X.; Liu, M.; Hu, Z.; Fan, B. Study on the structure-activity relationship of new anti-hiv nucleoside derivatives based on the support vector machine method. QSAR Comb.Sci., 2007, 26, 161-172.
    • (2007) QSAR Comb.Sci. , vol.26 , pp. 161-172
    • Wang, J.1    Liu, H.2    Qin, S.3    Yao, X.4    Liu, M.5    Hu, Z.6    Fan, B.7
  • 28
    • 33751536091 scopus 로고    scopus 로고
    • Structure-activity relationship study of oxindole-based inhibitors of cyclin-dependent kinases based on least-squares support vector machines
    • Li, J.; Liu, H.; Yao, X.; Liu, M.; Hu, Z.; Fan, B. Structure-activity relationship study of oxindole-based inhibitors of cyclin-dependent kinases based on least-squares support vector machines. Anal. Chima Acta, 2007, 581, 333-342.
    • (2007) Anal. Chima Acta , vol.581 , pp. 333-342
    • Li, J.1    Liu, H.2    Yao, X.3    Liu, M.4    Hu, Z.5    Fan, B.6
  • 29
    • 67649872793 scopus 로고    scopus 로고
    • QSAR studies on imidazothienopyrazines as IKK-beta inhibitors: From 2D to 3D
    • Long, W.; Liu, P.; Li, X.; Xu, Y.; Yu, J.; Ma, S.; Yu, L.; Zou, Z. QSAR studies on imidazothienopyrazines as IKK-beta inhibitors: from 2D to 3D. J. Chemom., 2009, 23, 304-314.
    • (2009) J. Chemom. , vol.23 , pp. 304-314
    • Long, W.1    Liu, P.2    Li, X.3    Xu, Y.4    Yu, J.5    Ma, S.6    Yu, L.7    Zou, Z.8
  • 30
    • 24644503995 scopus 로고    scopus 로고
    • QSAR study of natural, synthetic and environmental endocrine disrupting compounds for binding to the androgen receptor
    • Zhao, C.Y.; Zhang, R.S.; Zhang, H.X.; Xue, C.X.; Liu, H.X.; Liu, M.C.; Hu, Z.D.; Fan, B.T. QSAR study of natural, synthetic and environmental endocrine disrupting compounds for binding to the androgen receptor. SAR QSAR. Environ. Res. 2005, 16, 349-367.
    • (2005) SAR QSAR. Environ. Res. , vol.16 , pp. 349-367
    • Zhao, C.Y.1    Zhang, R.S.2    Zhang, H.X.3    Xue, C.X.4    Liu, H.X.5    Liu, M.C.6    Hu, Z.D.7    Fan, B.T.8
  • 31
    • 67949091195 scopus 로고    scopus 로고
    • Classification of Src Kinase Inhibitors Based on Support Vector Machine
    • Zhu, J.; Lu, W.; Liu, L.; Gu, T.; Niu, B. Classification of Src Kinase Inhibitors Based on Support Vector Machine. QSAR Comb. Sci., 2009, 6-7, 719-727.
    • (2009) QSAR Comb. Sci. , vol.6-7 , pp. 719-727
    • Zhu, J.1    Lu, W.2    Liu, L.3    Gu, T.4    Niu, B.5
  • 32
    • 44449153017 scopus 로고    scopus 로고
    • Support vector machines classification of hERG liabilities based on atom types
    • Jia, L.; Sun, H. Support vector machines classification of hERG liabilities based on atom types. Bioorg. Med. Chem., 2008, 16, 6252-6260.
    • (2008) Bioorg. Med. Chem. , vol.16 , pp. 6252-6260
    • Jia, L.1    Sun, H.2
  • 33
    • 61349156692 scopus 로고    scopus 로고
    • Support vector machines (SVM) in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation
    • Devos, O.; Ruckebush, C.; Durand, A.; Duponchel, L.; Huvenne, J.-P. Support vector machines (SVM) in near infrared (NIR) spectroscopy: focus on parameters optimization and model interpretation. Chemom. Intell. Lab. Syst., 2009, 96, 27-33.
    • (2009) Chemom. Intell. Lab. Syst. , vol.96 , pp. 27-33
    • Devos, O.1    Ruckebush, C.2    Durand, A.3    Duponchel, L.4    Huvenne, J.-P.5
  • 34
    • 85030413794 scopus 로고    scopus 로고
    • Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis
    • DOI 10.1109/TCBB.2007.1028
    • Tang, Y., Zhang, Y.-Q.; Huang, Z. Development of Two-Stage SVM-RFE Gene Selection Strategy for Microarray Expression Data Analysis. IEEE Trans. Comput. Bio. Bioinf., 2007, 4, 365-381. (Pubitemid 47274713)
    • (2007) IEEE/ACM Transactions on Computational Biology and Bioinformatics , vol.4 , Issue.3 , pp. 365-381
    • Tang, Y.1    Zhang, Y.-Q.2    Huang, Z.3
  • 35
    • 54749109964 scopus 로고    scopus 로고
    • Analysis of metabolomic data using support vector machines
    • Mahadevan, S.; Shah, S.L.; Marrie, T.J.; Slupsky, C.M. Analysis of metabolomic data using support vector machines. Anal. Chem., 2008, 80, 7562-7570.
    • (2008) Anal. Chem. , vol.80 , pp. 7562-7570
    • Mahadevan, S.1    Shah, S.L.2    Marrie, T.J.3    Slupsky, C.M.4
  • 36
    • 34249855141 scopus 로고    scopus 로고
    • MSVM-RFE: Extensions of SVM-RFE for multiclass gene selection on DNA microarray data
    • DOI 10.1093/bioinformatics/btm036
    • Zhou, X.; Tuck, D.P. MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data. Bioinformatics, 2007, 23, 1106-1114. (Pubitemid 47050562)
    • (2007) Bioinformatics , vol.23 , Issue.9 , pp. 1106-1114
    • Zhou, X.1    Tuck, D.P.2
  • 37
    • 33947324308 scopus 로고    scopus 로고
    • Improving the performance of SVM-RFE to select genes in microarray data
    • DOI 10.1186/1471-2105-7-S2-S12
    • Ding, Y.; Wilkins, D. Improving the performance of SVM-RFE to select genes in microarray data. BMC Bioinf., 2006, 7, S12. (Pubitemid 46442967)
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL. 2
    • Ding, Y.1    Wilkins, D.2
  • 38
  • 39
    • 33750982700 scopus 로고    scopus 로고
    • Prediction of estrogen receptor agonists and characterization of associated molecular descriptors by statistical learning methods
    • Li, H.; Ung, C.Y.; Yap, C.W.; Xue, Y.; Li, Z.R.; Chen, Y.Z. Prediction of estrogen receptor agonists and characterization of associated molecular descriptors by statistical learning methods. J. Mol. Graph. Model., 2006, 25, 313-323.
    • (2006) J. Mol. Graph. Model. , vol.25 , pp. 313-323
    • Li, H.1    Ung, C.Y.2    Yap, C.W.3    Xue, Y.4    Li, Z.R.5    Chen, Y.Z.6
  • 40
    • 5444272497 scopus 로고    scopus 로고
    • Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents
    • Xue, Y.; Li, Z.R.; Yap, C.W.; Sun, L.Z.; Chen, X.; Chen, Y.Z. Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents. J. Chem. Inf. Comput. Sci., 2004, 44, 1630-1638.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 1630-1638
    • Xue, Y.1    Li, Z.R.2    Yap, C.W.3    Sun, L.Z.4    Chen, X.5    Chen, Y.Z.6
  • 41
    • 33748104432 scopus 로고    scopus 로고
    • Application of support vector machines to in silico prediction of cytochrome P450 enzyme substrates and inhibitors
    • Yap, C.W.; Xue, Y.; Li, Z.R.; Chen, Y.Z. Application of support vector machines to in silico prediction of cytochrome P450 enzyme substrates and inhibitors. Curr. Top. Med. Chem., 2006, 6, 1593-1607.
    • (2006) Curr. Top. Med. Chem. , vol.6 , pp. 1593-1607
    • Yap, C.W.1    Xue, Y.2    Li, Z.R.3    Chen, Y.Z.4
  • 42
    • 55249101966 scopus 로고    scopus 로고
    • Identifying hERG potassium channel inhibitors by machine learning methods
    • Wang, M.; Yang, X.-G.; Xue, Y. Identifying hERG potassium channel inhibitors by machine learning methods. QSAR Comb. Sci., 2008, 27, 1028-1035.
    • (2008) QSAR Comb. Sci. , vol.27 , pp. 1028-1035
    • Wang, M.1    Yang, X.-G.2    Xue, Y.3
  • 44
    • 34250676530 scopus 로고    scopus 로고
    • Recursive Cluster Elimination (RCE) for classification and feature selection from gene expression data
    • Youset, M.; Jung, S.; Showe, L.C.; Showe, M.I. Recursive Cluster Elimination (RCE) for classification and feature selection from gene expression data. BMC Bioinf., 2007, 8, 144-155.
    • (2007) BMC Bioinf. , vol.8 , pp. 144-155
    • Youset, M.1    Jung, S.2    Showe, L.C.3    Showe, M.I.4
  • 45
    • 35348816323 scopus 로고    scopus 로고
    • A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine
    • DOI 10.1016/j.bmc.2007.08.057, PII S0968089607007675
    • Fatemi, M.H.; Gharaghani, S. A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine. Bioorg. Med. Chem., 2007, 15, 7746-7754. (Pubitemid 47575917)
    • (2007) Bioorganic and Medicinal Chemistry , vol.15 , Issue.24 , pp. 7746-7754
    • Fatemi, M.H.1    Gharaghani, S.2
  • 46
    • 67650075324 scopus 로고    scopus 로고
    • New hybrid genetic based support vector regression as qsar approach for analyzing flavonoids-GABA(A) complexes
    • Goodarzi, M.; Duchowicz, P.R.; Wu, C.H.; Fernandez, F.M.; Castro, E.A. New hybrid genetic based support vector regression as qsar approach for analyzing flavonoids-GABA(A) complexes. J. Chem. Inf. Model., 2009, 49, 1475-1485.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 1475-1485
    • Goodarzi, M.1    Duchowicz, P.R.2    Wu, C.H.3    Fernandez, F.M.4    Castro, E.A.5
  • 47
    • 66149104557 scopus 로고    scopus 로고
    • QSPR study of n-octanol/water partition coefficient of some aromatic compounds using support vector regression
    • Yang, S.-S.; Lu, W.-C.; Gu, T.-H.; Yan, L.-M.; Li, G.-Z. QSPR study of n-octanol/water partition coefficient of some aromatic compounds using support vector regression. QSAR Comb. Sci., 2009, 28, 175-182.
    • (2009) QSAR Comb. Sci. , vol.28 , pp. 175-182
    • Yang, S.-S.1    Lu, W.-C.2    Gu, T.-H.3    Yan, L.-M.4    Li, G.-Z.5
  • 48
    • 67349205580 scopus 로고    scopus 로고
    • Three-class classification models of logS and logP derived by using GA-CG-SVM approach
    • Zhang, H.; Xiang, M.-L.; Ma, C.-Y.; Huang, Q.; Li, W.; Xie, Y.; Wei, Y.-Q.; Yang, S.-Y. Three-class classification models of logS and logP derived by using GA-CG-SVM approach. Mol. Diversity, 2009, 13, 261-268.
    • (2009) Mol. Diversity , vol.13 , pp. 261-268
    • Zhang, H.1    Xiang, M.-L.2    Ma, C.-Y.3    Huang, Q.4    Li, W.5    Xie, Y.6    Wei, Y.-Q.7    Yang, S.-Y.8
  • 49
    • 44749088791 scopus 로고    scopus 로고
    • Prediction models of human plasma protein binding rate and oral bioavailability derived by using GA-CG-SVM method
    • Ma, C.-Y.; Yang, S.-Y.; Zhang, H.; Xiang, M.-Li; Huang, Q.; Wei, Y.-Q. Prediction models of human plasma protein binding rate and oral bioavailability derived by using GA-CG-SVM method. J. Pharm. Biomed. Anal., 2008, 47, 677-682.
    • (2008) J. Pharm. Biomed. Anal. , vol.47 , pp. 677-682
    • Ma, C.-Y.1    Yang, S.-Y.2    Zhang, H.3    Xiang, M.-L.4    Huang, Q.5    Wei, Y.-Q.6
  • 50
    • 59549104238 scopus 로고    scopus 로고
    • Support vector machine and pharmacophore-based prediction models of multidrug-resistance protein 2 (MRP2) inhibitors
    • Zhang, H.; Xiang, M.-L.; Zhao, Y.-L.; Wei, Y.-Q., Yang, S.-Y. Support vector machine and pharmacophore-based prediction models of multidrug-resistance protein 2 (MRP2) inhibitors. Eur. J. Pharm. Sci., 2009, 36, 451-457.
    • (2009) Eur. J. Pharm. Sci. , vol.36 , pp. 451-457
    • Zhang, H.1    Xiang, M.-L.2    Zhao, Y.-L.3    Wei, Y.-Q.4    Yang, S.-Y.5
  • 51
    • 33749384342 scopus 로고    scopus 로고
    • Comparison of methods for chemical-compound affinity prediction
    • DOI 10.1080/10629360600934168, PII N83653076PL30616
    • Koike, A. Comparison of methods for chemical-compound affinity prediction. SAR QSAR. Env. Res., 2006, 17, 497-514. (Pubitemid 44507094)
    • (2006) SAR and QSAR in Environmental Research , vol.17 , Issue.5 , pp. 497-514
    • Koike, A.1
  • 52
    • 33746333526 scopus 로고    scopus 로고
    • A QSAR study of avian oral toxicity using support vector machines and genetic algorithms
    • DOI 10.1002/qsar.200530189
    • Mazzatorta, P.; Cronin, M.T.D.; Benfenati, E. A QSAR study of avian oral toxicity using support vector machines and genetic algorithms. QSAR Comb. Sci., 2006, 25, 616-628. (Pubitemid 44113878)
    • (2006) QSAR and Combinatorial Science , vol.25 , Issue.7 , pp. 616-628
    • Mazzatorta, P.1    Cronin, M.T.D.2    Benfenati, E.3
  • 54
    • 50549087952 scopus 로고    scopus 로고
    • Proteometric modeling of protein conformational stability using amino acid sequence autocorrelation vectors and genetic algorithmoptimized support vector machines
    • Fernandez, M.; Fernandez, L.; Sanchez, P.; Caballero, J.; Abreu, J.I. Proteometric modeling of protein conformational stability using amino acid sequence autocorrelation vectors and genetic algorithmoptimized support vector machines. Mol. Simulat., 2008, 34, 857-872.
    • (2008) Mol. Simulat. , vol.34 , pp. 857-872
    • Fernandez, M.1    Fernandez, L.2    Sanchez, P.3    Caballero, J.4    Abreu, J.I.5
  • 55
    • 42749090642 scopus 로고    scopus 로고
    • Classification of voltage-gated K+ ion channels from 3D pseudofolding graph representation of protein sequences using genetic algorithm-optimized support vector machines
    • Fernandez, M.; Fernandez, L.; Abreu, J.I.; Garriiga, M. Classification of voltage-gated K+ ion channels from 3D pseudofolding graph representation of protein sequences using genetic algorithm-optimized support vector machines. J. Mol. Graph. Model., 2008, 26, 1306-1314.
    • (2008) J. Mol. Graph. Model. , vol.26 , pp. 1306-1314
    • Fernandez, M.1    Fernandez, L.2    Abreu, J.I.3    Garriiga, M.4
  • 56
    • 34548379115 scopus 로고    scopus 로고
    • ESVM: Evolutionary support vector machine for automatic feature selection and classification of microarray data
    • DOI 10.1016/j.biosystems.2006.12.003, PII S0303264706002875
    • Huang, H.-L.; Chang, F.-L. ESVM: Evolutionary support vector machine for automatic feature selection and classification of microarray data. Biosystems, 2007, 90, 516-528. (Pubitemid 47362467)
    • (2007) BioSystems , vol.90 , Issue.2 , pp. 516-528
    • Huang, H.-L.1    Chang, F.-L.2
  • 57
    • 57649213892 scopus 로고    scopus 로고
    • Simultaneous feature selection and parameter optimisation using an artificial ant colony: Case study of melting point prediction
    • O'Boyle, N.M.; Palmer, D.S.; Nigsch, F.; Mitchell, J.B.O. Simultaneous feature selection and parameter optimisation using an artificial ant colony: case study of melting point prediction. Chem. Central J., 2008, 2, 21-35.
    • (2008) Chem. Central J. , vol.2 , pp. 21-35
    • O'Boyle, N.M.1    Palmer, D.S.2    Nigsch, F.3    Mitchell, J.B.O.4
  • 58
    • 34547663158 scopus 로고    scopus 로고
    • Identifying P-glycoprotein substrates using a support vector machine optimized by a particle SWarm
    • DOI 10.1021/ci700083n
    • Huang, J.; Ma, G.; Muhammad, I.; Cheng, Y. Identifying Pglycoprotein substrates using a support vector machine optimized by a particle swarm. J. Chem. Inf. Model., 2007, 47, 1638-1647. (Pubitemid 47210067)
    • (2007) Journal of Chemical Information and Modeling , vol.47 , Issue.4 , pp. 1638-1647
    • Huang, J.1    Ma, G.2    Muhammad, I.3    Cheng, Y.4
  • 59
    • 43849098929 scopus 로고    scopus 로고
    • Tailored scoring function of Trypsin-benzamidine complex using COMBINE descriptors and support vector regression
    • Arakawa, M.; Hasegawa, K.; Funatsu, K. Tailored scoring function of Trypsin-benzamidine complex using COMBINE descriptors and support vector regression. Chemom. Intell. Lab. Syst., 2008, 92,145-151.
    • (2008) Chemom. Intell. Lab. Syst. , vol.92 , pp. 145-151
    • Arakawa, M.1    Hasegawa, K.2    Funatsu, K.3
  • 60
    • 70349789336 scopus 로고    scopus 로고
    • Application of data mining to quantitative structure-activity relationship using rough set theory
    • Hasegawa, K.; Koyama, M.; Arakawa, M.; Funatsu, K. Application of data mining to quantitative structure-activity relationship using rough set theory. Chemom. Intell. Lab. Syst., 2009, 99, 66-70.
    • (2009) Chemom. Intell. Lab. Syst. , vol.99 , pp. 66-70
    • Hasegawa, K.1    Koyama, M.2    Arakawa, M.3    Funatsu, K.4
  • 61
    • 2942702317 scopus 로고    scopus 로고
    • SVM-based feature selection for characterization of focused compound collections
    • Byvatov, E.; Schneider, G. SVM-based feature selection for characterization of focused compound collections. J. Chem. Inf. Model., 2004, 44, 993-999.
    • (2004) J. Chem. Inf. Model. , vol.44 , pp. 993-999
    • Byvatov, E.1    Schneider, G.2
  • 62
    • 27444433232 scopus 로고    scopus 로고
    • Extraction and visualization of potential pharmacophore points using support vector machines: Application to ligand-based virtual screening for COX-2 inhibitors
    • DOI 10.1021/jm050619h
    • Franke, L.; Byvatov, E.; Werz, O.; Steinhilber, D.; Schneider, P.; Schneider G. Extraction and visualization of potential pharmacophore points using support vector machines: application to ligand-based virtual screening for COX-2 inhibitors. J. Med. Chem., 2005, 48, 6997-7004. (Pubitemid 41533121)
    • (2005) Journal of Medicinal Chemistry , vol.48 , Issue.22 , pp. 6997-7004
    • Franke, L.1    Byvatov, E.2    Werz, O.3    Steinhilber, D.4    Schneider, P.5    Schneider, G.6
  • 63
    • 34250690497 scopus 로고    scopus 로고
    • A virtual screening filter for identification of cytochrome P450 2C9 (CYP2C9) inhibitors
    • DOI 10.1002/qsar.200630143
    • Byvatov, E.; Baringhaus, K.-H.; Schneider, G.; Matter, H. A virtual screening filter for identification of cytochrome P450 2C9 (CYP2C9) inhibitors. QSAR Comb. Sci., 2007, 5, 618-628. (Pubitemid 46932851)
    • (2007) QSAR and Combinatorial Science , vol.26 , Issue.5 , pp. 618-628
    • Byvatov, E.1    Baringhaus, K.-H.2    Schneider, G.3    Matter, H.4
  • 64
    • 69549105991 scopus 로고    scopus 로고
    • New variable selection method using interval segmentation purity with application to blockwise kernel transform support vector machine classification of high-dimensional microarray data
    • Tang, L.-J.; Du, W.; Fu, H.-Y.; Jiang, J.-H.; Wu, H.-L.; Shen, G.-L.; Yu, R.-Q. New variable selection method using interval segmentation purity with application to blockwise kernel transform support vector machine classification of high-dimensional microarray data. J. Chem. Inf. Model., 2009, 49, 2002-2009.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 2002-2009
    • Tang, L.-J.1    Du, W.2    Fu, H.-Y.3    Jiang, J.-H.4    Wu, H.-L.5    Shen, G.-L.6    Yu, R.-Q.7
  • 65
    • 67651230187 scopus 로고    scopus 로고
    • Computational mapping tools for drug discovery
    • Ivanenkov, Y.A.; Savchuk, N.P.; Ekins, S.; Balakin, K.V. Computational mapping tools for drug discovery. DDT, 2009, 14,767-775.
    • (2009) DDT , vol.14 , pp. 767-775
    • Ivanenkov, Y.A.1    Savchuk, N.P.2    Ekins, S.3    Balakin, K.V.4
  • 67
    • 84925560039 scopus 로고    scopus 로고
    • Development of druglikeness model and its visualization
    • Arakawa, M.; Miyao, T.; Funatsu, K. Development of druglikeness model and its visualization. J. Comput.-Aided Chem., 2008, 9, 70-80.
    • (2008) J. Comput.-Aided Chem. , vol.9 , pp. 70-80
    • Arakawa, M.1    Miyao, T.2    Funatsu, K.3
  • 68
    • 84870992765 scopus 로고    scopus 로고
    • Data Modeling and Chemical Interpretation of ADME Properties Using Regression and Rule Mining Techniques
    • Gary, W.C.; Ed., Bentham Science Publisher
    • Hasegawa, K.; Funatsu, K. Data Modeling and Chemical Interpretation of ADME Properties Using Regression and Rule Mining Techniques. In Frontier in Drug Design & Discovery, Gary, W.C.; Ed., Bentham Science Publisher, 2009, 4, 378-428.
    • (2009) Frontier in Drug Design & Discovery , vol.4 , pp. 378-428
    • Hasegawa, K.1    Funatsu, K.2
  • 70
    • 34250882118 scopus 로고    scopus 로고
    • Visualisation and interpretation of Support Vector Regression models
    • DOI 10.1016/j.aca.2007.03.023, PII S0003267007004904
    • Ustun, B.; Melssen, W.J.; Buydens, L.M.C. Visualisation and interpretation of Support Vector Regression models. Anal. Chim. Acta, 2007, 595, 299-309. (Pubitemid 46990301)
    • (2007) Analytica Chimica Acta , vol.595 , Issue.1-2 SPEC. ISS , pp. 299-309
    • Ustun, B.1    Melssen, W.J.2    Buydens, L.M.C.3
  • 71
    • 41549092817 scopus 로고    scopus 로고
    • Nonlinear support vector machine visualization for risk factor analysis using nomograms and localized radial basis function kernels
    • Cho, B.H.; Yu, H.; Lee, J.; Chee, Y.J.; Kim, I.Y.; Kim, S.I. Nonlinear support vector machine visualization for risk factor analysis using nomograms and localized radial basis function kernels. IEEE Trans. Inf. Technol. Biomed., 2008, 12, 247-256.
    • (2008) IEEE Trans. Inf. Technol. Biomed. , vol.12 , pp. 247-256
    • Cho, B.H.1    Yu, H.2    Lee, J.3    Chee, Y.J.4    Kim, I.Y.5    Kim, S.I.6
  • 72
    • 37649025659 scopus 로고    scopus 로고
    • Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods
    • Cho, B.H.; Yu, H.; Kim, K.-W.; Kim, T.H.; Kim, I.Y.; Kim, S.I. Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods. Artificial Intell. Med., 2008, 42, 37-53.
    • (2008) Artificial Intell. Med. , vol.42 , pp. 37-53
    • Cho, B.H.1    Yu, H.2    Kim, K.-W.3    Kim, T.H.4    Kim, I.Y.5    Kim, S.I.6
  • 74
    • 67649784530 scopus 로고    scopus 로고
    • Critical comparative analysis, validation and interpretation of SVM and PLS regression models in a QSAR study on HIV-1 protease inhibitors
    • Hernandez, N.; Kiralj, R.; Ferreira, M.M.C.; Talavera, I. Critical comparative analysis, validation and interpretation of SVM and PLS regression models in a QSAR study on HIV-1 protease inhibitors. Chemom. Intell. Lab. Syst., 2009, 98, 65-77.
    • (2009) Chemom. Intell. Lab. Syst. , vol.98 , pp. 65-77
    • Hernandez, N.1    Kiralj, R.2    Ferreira, M.M.C.3    Talavera, I.4
  • 75
    • 61349156692 scopus 로고    scopus 로고
    • Support vector machines (SVM) in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation
    • Devos, O.; Ruckebusch C.; Durand, A.; Duponchel, L.; Huvenne, J.-P. Support vector machines (SVM) in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation. Chemom. Intell. Lab. Syst., 2009, 96, 27-33.
    • (2009) Chemom. Intell. Lab. Syst. , vol.96 , pp. 27-33
    • Devos, O.1    Ruckebusch, C.2    Durand, A.3    Duponchel, L.4    Huvenne, J.-P.5
  • 76
    • 35848947985 scopus 로고    scopus 로고
    • Tagged fragment method for evolutionary structure-based de novo lead generation and optimization
    • DOI 10.1021/jm070750k
    • Liu, Q.; Masek, B.; Smith, K.; Smith, J. Tagged fragment method for evolutionary structure-based de novo lead generation and optimization. J. Med Chem. 2007, 50, 5392-5402. (Pubitemid 350057850)
    • (2007) Journal of Medicinal Chemistry , vol.50 , Issue.22 , pp. 5392-5402
    • Liu, Q.1    Masek, B.2    Smith, K.3    Smith, J.4
  • 77
    • 66149089880 scopus 로고    scopus 로고
    • A novel in silico approach to drug discovery via computational intelligence
    • Hecht, D; Fogel, G.B. A novel in silico approach to drug discovery via computational intelligence. J. Chem. Inf. Model., 2009, 49, 1105-1121.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 1105-1121
    • Hecht, D.1    Fogel, G.B.2
  • 79
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian Learning and the Relevance Vector Machine
    • DOI 10.1162/15324430152748236
    • Tipping, M.E. Sparse bayesian learning and the relevance vector machine. J. Machine Learning Res. 2001, 1, 211-244. (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 80
    • 70349584934 scopus 로고    scopus 로고
    • Robustified least squares support vector classification
    • Debruyne, M.; Serneels, S.; Verdonck, T. Robustified least squares support vector classification. J. Chemom., 2009, 23, 479-486.
    • (2009) J. Chemom. , vol.23 , pp. 479-486
    • Debruyne, M.1    Serneels, S.2    Verdonck, T.3
  • 81
    • 69349092894 scopus 로고    scopus 로고
    • Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR
    • Cui, W.; Yan, X. Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR. Chemom. Intell. Lab. Syst., 2009, 98, 130-135.
    • (2009) Chemom. Intell. Lab. Syst. , vol.98 , pp. 130-135
    • Cui, W.1    Yan, X.2
  • 83
    • 54249156505 scopus 로고    scopus 로고
    • Molecule kernels: A descriptor- And alignment-free quantitative structure-activity relationship approach
    • Mohr, J.A.; Jain, B.J.; Obermayer, K. Molecule kernels: a descriptor- and alignment-free quantitative structure-activity relationship approach. J. Chem. Inf. Model., 2008, 48, 1868-1881.
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 1868-1881
    • Mohr, J.A.1    Jain, B.J.2    Obermayer, K.3
  • 84
    • 33646246986 scopus 로고    scopus 로고
    • Kernel functions for attributed molecular graphs - A new similarity-based approach to ADME prediction in classification and regression
    • Frohlich H.; Wegner, J.K.; Sieker, F.; Zell, A. Kernel functions for attributed molecular graphs - a new similarity-based approach to ADME prediction in classification and regression. QSAR Comb. Sci., 2006, 25, 317-326.
    • (2006) QSAR Comb. Sci. , vol.25 , pp. 317-326
    • Frohlich, H.1    Wegner, J.K.2    Sieker, F.3    Zell, A.4
  • 85
    • 52749085437 scopus 로고    scopus 로고
    • Protein-ligand interaction prediction: An improved chemogenomics approach
    • Jacob, L.; Vert, J.-P. Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics, 2008, 24, 2149-2156.
    • (2008) Bioinformatics , vol.24 , pp. 2149-2156
    • Jacob, L.1    Vert, J.-P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.