메뉴 건너뛰기




Volumn 96, Issue 1, 2009, Pages 27-33

Support vector machines (SVM) in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation

Author keywords

Classification; Interpretation; Model visualization; Near infrared spectroscopy; Support vector machines

Indexed keywords

ARTICLE; CHEMOMETRICS; LEARNING ALGORITHM; MATHEMATICAL ANALYSIS; NEAR INFRARED SPECTROSCOPY; PRIORITY JOURNAL; SUPPORT VECTOR MACHINE;

EID: 61349156692     PISSN: 01697439     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.chemolab.2008.11.005     Document Type: Article
Times cited : (241)

References (23)
  • 5
    • 33845462550 scopus 로고    scopus 로고
    • Support vector machines: A recent method for classification in chemometrics
    • Xu Y., Zomer S., and Brereton R.G. Support vector machines: A recent method for classification in chemometrics. Crit. Rev. Anal. Chem. 36 (2006) 177-188
    • (2006) Crit. Rev. Anal. Chem. , vol.36 , pp. 177-188
    • Xu, Y.1    Zomer, S.2    Brereton, R.G.3
  • 6
    • 0036685120 scopus 로고    scopus 로고
    • Applicational aspects of support vector machines
    • Belousov A.I., Verzakov S.A., and Von Frese J. Applicational aspects of support vector machines. J. Chemom. 16 (2002) 482-489
    • (2002) J. Chemom. , vol.16 , pp. 482-489
    • Belousov, A.I.1    Verzakov, S.A.2    Von Frese, J.3
  • 11
    • 33846650363 scopus 로고    scopus 로고
    • Feasibility study on identification of green, black and Oolong teas using near-infrared reflectance spectroscopy based on support vector machine (SVM)
    • Chen Q., Zhao J., Fang C.H., and Wang D. Feasibility study on identification of green, black and Oolong teas using near-infrared reflectance spectroscopy based on support vector machine (SVM). Spectrochim. Acta A 66 (2007) 568-574
    • (2007) Spectrochim. Acta A , vol.66 , pp. 568-574
    • Chen, Q.1    Zhao, J.2    Fang, C.H.3    Wang, D.4
  • 12
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc 2 (1998) 121-167
    • (1998) Data Min. Knowl. Disc , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 14
    • 0037191113 scopus 로고    scopus 로고
    • A flexible classification approach with optimal generalisation performance: support vector machines
    • Belousov A.I., Verzakov S.A., and Von Frese J. A flexible classification approach with optimal generalisation performance: support vector machines. Chemom. Intell. Lab. Syst. 64 (2002) 15-25
    • (2002) Chemom. Intell. Lab. Syst. , vol.64 , pp. 15-25
    • Belousov, A.I.1    Verzakov, S.A.2    Von Frese, J.3
  • 17
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., and Vapnik V. Support-vector networks. Mach. Learn. 20 (1995) 273-297
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 20
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle O., Vapnik V., Bousquet O., and Mukherjee S. Choosing multiple parameters for support vector machines. Mach. Learn 46 (2002) 131-159
    • (2002) Mach. Learn , vol.46 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 23
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • Hsu C.-W., and Lin C.-J. A comparison of methods for multi-class support vector machines. IEEE T. Neural Network 13 (2002) 415-425
    • (2002) IEEE T. Neural Network , vol.13 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.