메뉴 건너뛰기




Volumn 11, Issue 1, 2009, Pages 30-39

Knowledge-based data analysis comes of age

Author keywords

Bayesian analysis; Computational molecular biology; Databases; Metabolic pathways; Signal pathways

Indexed keywords

ARTICLE; BAYES THEOREM; DNA MICROARRAY; GENETIC ASSOCIATION; QUANTITATIVE TRAIT LOCUS; SYSTEMS BIOLOGY;

EID: 77950344077     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbp044     Document Type: Article
Times cited : (17)

References (70)
  • 1
  • 2
    • 0025183708 scopus 로고
    • Basic local alignment search tool
    • Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol 1990;215:403-10.
    • (1990) J Mol Biol , vol.215 , pp. 403-410
    • Altschul, S.F.1    Gish, W.2    Miller, W.3
  • 3
    • 10544256600 scopus 로고    scopus 로고
    • Expression monitoring by hybridization to high-density oligonucleotide arrays
    • Lockhart DJ, Dong H, Byrne MC, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 1996;14:1675-80.
    • (1996) Nat Biotechnol , vol.14 , pp. 1675-1680
    • Lockhart, D.J.1    Dong, H.2    Byrne, M.C.3
  • 4
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995;270:467-70.
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.W.3
  • 5
    • 66249136447 scopus 로고    scopus 로고
    • Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis
    • Spencer SL, Gaudet S, Albeck JG, et al. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 2009;459:428-32.
    • (2009) Nature , vol.459 , pp. 428-432
    • Spencer, S.L.1    Gaudet, S.2    Albeck, J.G.3
  • 6
    • 0035553825 scopus 로고    scopus 로고
    • Finding genes influencing susceptibility to complex diseases in the post-genome era
    • Rannala B. Finding genes influencing susceptibility to complex diseases in the post-genome era. Am J Pharmacogenomics 2001;1:203-21.
    • (2001) Am J Pharmacogenomics , vol.1 , pp. 203-221
    • Rannala, B.1
  • 7
    • 42349112088 scopus 로고    scopus 로고
    • Genomewide association studies for complex traits: consensus, uncertainty and challenges
    • McCarthy MI, Abecasis GR, Cardon LR, et al. Genomewide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 2008;9:356-69.
    • (2008) Nat Rev Genet , vol.9 , pp. 356-369
    • McCarthy, M.I.1    Abecasis, G.R.2    Cardon, L.R.3
  • 8
    • 65549130531 scopus 로고    scopus 로고
    • Collaborative genome-wide association studies of diverse diseases: programs of the NHGRI's office of population genomics
    • Manolio TA. Collaborative genome-wide association studies of diverse diseases: programs of the NHGRI's office of population genomics. Pharmacogenomics 2009;10:235-41.
    • (2009) Pharmacogenomics , vol.10 , pp. 235-241
    • Manolio, T.A.1
  • 9
    • 33748567134 scopus 로고    scopus 로고
    • Gel-free mass spectrometry-based high throughput proteomics: tools for studying biological response of proteins and proteomes
    • Roe MR, Griffin TJ. Gel-free mass spectrometry-based high throughput proteomics: tools for studying biological response of proteins and proteomes. Proteomics 2006;6: 4678-87.
    • (2006) Proteomics , vol.6 , pp. 4678-4687
    • Roe, M.R.1    Griffin, T.J.2
  • 10
    • 35148842343 scopus 로고    scopus 로고
    • High-throughput proteomics using antibody microarrays: an update
    • Borrebaeck CA, Wingren C. High-throughput proteomics using antibody microarrays: an update. Expert Rev Mol Diagn 2007;7:673-86.
    • (2007) Expert Rev Mol Diagn , vol.7 , pp. 673-686
    • Borrebaeck, C.A.1    Wingren, C.2
  • 11
    • 43349100561 scopus 로고    scopus 로고
    • Towards highthroughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry
    • Han J, Danell RM, Patel JR, et al. Towards highthroughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry. Metabolomics 2008;4:128-40.
    • (2008) Metabolomics , vol.4 , pp. 128-140
    • Han, J.1    Danell, R.M.2    Patel, J.R.3
  • 12
    • 0001185873 scopus 로고
    • An essay towards solving a problem in the doctrine of chances
    • Bayes T. An essay towards solving a problem in the doctrine of chances. Philos Trans Royal Soc 1763;53:370-418.
    • (1763) Philos Trans Royal Soc , vol.53 , pp. 370-418
    • Bayes, T.1
  • 13
    • 77950854062 scopus 로고    scopus 로고
    • Memoires de mathématique et de physique présentés a' l'Académie Royale des Sciences, par divers savants, et lû s dans ses assemblées
    • Laplace P-S. Mémoire sur la probabilité des causes par les événements, Memoires de mathématique et de physique présentés a' l'Académie Royale des Sciences, par divers savants, et lû s dans ses assemblées 6 1774.
    • Mémoire sur la probabilité des causes par les événements , vol.6 , pp. 1774
    • Laplace, P.-S.1
  • 14
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen MB, Spellman PT, Brown PO, et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998;95:14863-8.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 14863-14868
    • Eisen, M.B.1    Spellman, P.T.2    Brown, P.O.3
  • 15
    • 26044460461 scopus 로고    scopus 로고
    • The use of receiver operating characteristic curves in biomedical informatics
    • Lasko TA, Bhagwat JG, Zou KH, et al. The use of receiver operating characteristic curves in biomedical informatics. J Biomed Inform 2005;38:404-15.
    • (2005) J Biomed Inform , vol.38 , pp. 404-415
    • Lasko, T.A.1    Bhagwat, J.G.2    Zou, K.H.3
  • 16
    • 0043194165 scopus 로고    scopus 로고
    • Shrinkage-based similarity metric for cluster analysis of microarray data
    • Cherepinsky V, Feng J, Rejali M, et al. Shrinkage-based similarity metric for cluster analysis of microarray data. Proc Natl Acad Sci USA 2003;100:9668-73.
    • (2003) ProcNatl Acad Sci USA , vol.100 , pp. 9668-9673
    • Cherepinsky, V.1    Feng, J.2    Rejali, M.3
  • 17
    • 0033093826 scopus 로고    scopus 로고
    • A new method for spectral decomposition using a bilinear Bayesian approach
    • Ochs MF, Stoyanova RS, Arias-Mendoza F, et al. A new method for spectral decomposition using a bilinear Bayesian approach. J Magn Reson 1999;137:161-76.
    • (1999) J Magn Reson , vol.137 , pp. 161-176
    • Ochs, M.F.1    Stoyanova, R.S.2    Arias-Mendoza, F.3
  • 18
    • 0035999975 scopus 로고    scopus 로고
    • Application of Bayesian Decomposition for analysing microarray data
    • Moloshok TD, Klevecz RR, Grant JD, et al. Application of Bayesian Decomposition for analysing microarray data. Bioinformatics 2002;18:566-75.
    • (2002) Bioinformatics , vol.18 , pp. 566-575
    • Moloshok, T.D.1    Klevecz, R.R.2    Grant, J.D.3
  • 19
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature 1999;401: 788-91.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 20
    • 1642529511 scopus 로고    scopus 로고
    • Metagenes and molecular pattern discovery using matrix factorization
    • Brunet JP, Tamayo P, Golub TR, et al. Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci USA 2004;101:4164-9.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 4164-4169
    • Brunet, J.P.1    Tamayo, P.2    Golub, T.R.3
  • 21
    • 0037810449 scopus 로고    scopus 로고
    • Subsystem identification through dimensionality reduction of large-scale gene expression data
    • Kim PM, Tidor B. Subsystem identification through dimensionality reduction of large-scale gene expression data. GenomeRes 2003;13:1706-18.
    • (2003) GenomeRes , vol.13 , pp. 1706-1718
    • Kim, P.M.1    Tidor, B.2
  • 22
    • 27744601822 scopus 로고    scopus 로고
    • Improving molecular cancer class discovery through sparse non-negative matrix factorization
    • Gao Y, Church G. Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics 2005;21:3970-5.
    • (2005) Bioinformatics , vol.21 , pp. 3970-3975
    • Gao, Y.1    Church, G.2
  • 23
    • 0000676356 scopus 로고    scopus 로고
    • Prior distributions on measure space
    • Sibisi S, Skilling J. Prior distributions on measure space. J Royal Stat Soc B 1997;59:217-35.
    • (1997) J Royal Stat Soc B , vol.59 , pp. 217-235
    • Sibisi, S.1    Skilling, J.2
  • 24
    • 62549125109 scopus 로고    scopus 로고
    • High-dimensional sparse factor modelling: applications in gene expression genomics
    • Carvalho CM, Chang J, Lucas J, et al. High-dimensional sparse factor modelling: applications in gene expression genomics. J Am Stat Assoc 2008;103:1438-56.
    • (2008) J Am Stat Assoc , vol.103 , pp. 1438-1456
    • Carvalho, C.M.1    Chang, J.2    Lucas, J.3
  • 25
    • 71549152223 scopus 로고    scopus 로고
    • Matrix factorization for recovery of biological processes from microarray data
    • Johnson M, Brand L, (eds). New York: Elsevier-Academic Press
    • Kossenkov A, Ochs MF. Matrix factorization for recovery of biological processes from microarray data. In: Johnson M, Brand L, (eds). Methods Enzymology, Computer Methods B, p. 59-76, New York: Elsevier-Academic Press, 2009.
    • (2009) Methods Enzymology, Computer Methods B , pp. 59-76
    • Kossenkov, A.1    Ochs, M.F.2
  • 26
    • 40549089236 scopus 로고    scopus 로고
    • Integrating microarray and proteomics data to predict the response on cetuximab in patients with rectal cancer
    • Daemen A, Gevaert O, De Bie T, et al. Integrating microarray and proteomics data to predict the response on cetuximab in patients with rectal cancer. Pac Symp Biocomput 2008;13:166-77.
    • (2008) Pac Symp Biocomput , vol.13 , pp. 166-177
    • Daemen, A.1    Gevaert, O.2    De Bie, T.3
  • 27
    • 59549105107 scopus 로고    scopus 로고
    • Gene expression trends and protein features effectively complement each other in gene function prediction
    • Wabnik K, Hvidsten TR, Kedzierska A, et al. Gene expression trends and protein features effectively complement each other in gene function prediction. Bioinformatics 2009;25:322-30.
    • (2009) Bioinformatics , vol.25 , pp. 322-330
    • Wabnik, K.1    Hvidsten, T.R.2    Kedzierska, A.3
  • 28
    • 36448972673 scopus 로고    scopus 로고
    • Evaluation and integration of 49 genome-wide experiments and the prediction of previously unknown obesity-related genes
    • English SB, Butte AJ. Evaluation and integration of 49 genome-wide experiments and the prediction of previously unknown obesity-related genes. Bioinformatics 2007;23: 2910-7.
    • (2007) Bioinformatics , vol.23 , pp. 2910-2917
    • English, S.B.1    Butte, A.J.2
  • 29
    • 34548567066 scopus 로고    scopus 로고
    • Integrative analysis of genomic aberrations associated with prostate cancer progression
    • Kim JH, Dhanasekaran SM, Mehra R, et al. Integrative analysis of genomic aberrations associated with prostate cancer progression. Cancer Res 2007;67:8229-39.
    • (2007) Cancer Res , vol.67 , pp. 8229-8239
    • Kim, J.H.1    Dhanasekaran, S.M.2    Mehra, R.3
  • 30
    • 35748937338 scopus 로고    scopus 로고
    • Integrative genomics analysis reveals silencing of beta-adrenergic signaling by polycomb in prostate cancer
    • Yu J, Cao Q, Mehra R, et al. Integrative genomics analysis reveals silencing of beta-adrenergic signaling by polycomb in prostate cancer. Cancer Cell 2007;12:419-31.
    • (2007) Cancer Cell , vol.12 , pp. 419-431
    • Yu, J.1    Cao, Q.2    Mehra, R.3
  • 31
    • 65649116159 scopus 로고    scopus 로고
    • Data structures and algorithms for analysis of genetics of gene expression with Bioconductor: GGtools 3.x
    • Carey VJ, Davis AR, Lawrence MF, et al. Data structures and algorithms for analysis of genetics of gene expression with Bioconductor: GGtools 3.x. Bioinformatics 2009;25: 1447-8.
    • (2009) Bioinformatics , vol.25 , pp. 1447-1448
    • Carey, V.J.1    Davis, A.R.2    Lawrence, M.F.3
  • 32
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N, Linial M, Nachman I, et al. Using Bayesian networks to analyze expression data. J Comput Biol 2000;7: 601-20.
    • (2000) J Comput Biol , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3
  • 33
    • 0037174671 scopus 로고    scopus 로고
    • Transcriptional regulatory networks in Saccharomyces cerevisiae
    • Lee TI, Rinaldi NJ, Robert F, et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 2002;298: 799-804.
    • (2002) Science , vol.298 , pp. 799-804
    • Lee, T.I.1    Rinaldi, N.J.2    Robert, F.3
  • 34
    • 66349101154 scopus 로고    scopus 로고
    • Predicting functionality of protein-DNA interactions by integrating diverse evidence
    • Ucar D, Beyer A, Parthasarathy S, et al. Predicting functionality of protein-DNA interactions by integrating diverse evidence. Bioinformatics 2009;25:i137-44.
    • (2009) Bioinformatics , vol.25
    • Ucar, D.1    Beyer, A.2    Parthasarathy, S.3
  • 35
    • 65149083962 scopus 로고    scopus 로고
    • The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line
    • Suzuki H, Forrest AR, van Nimwegen E, et al. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet 2009;41:553-62.
    • (2009) Nat Genet , vol.41 , pp. 553-562
    • Suzuki, H.1    Forrest, A.R.2    van Nimwegen, E.3
  • 36
    • 38549096565 scopus 로고    scopus 로고
    • JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update
    • Bryne JC, Valen E, Tang MH, et al. JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res 2008;36:D102-6.
    • (2008) Nucleic Acids Res , vol.36
    • Bryne, J.C.1    Valen, E.2    Tang, M.H.3
  • 37
    • 33644876958 scopus 로고    scopus 로고
    • TRANSFAC and its module TRANS Compel: transcriptional gene regulation in eukaryotes
    • Matys V, Kel-Margoulis OV, Fricke E, et al. TRANSFAC and its module TRANS Compel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 2006;34:D108-10.
    • (2006) Nucleic Acids Res , vol.34
    • Matys, V.1    Kel-Margoulis, O.V.2    Fricke, E.3
  • 38
    • 35748970508 scopus 로고    scopus 로고
    • Determining transcription factor activity from microarray data using Bayesian Markov Chain Monte Carlo sampling
    • Kossenkov AV, Peterson AJ, Ochs MF. Determining transcription factor activity from microarray data using Bayesian Markov Chain Monte Carlo sampling. Stud Health Technol Inform 2007;129:1250-4.
    • (2007) Stud Health Technol Inform , vol.129 , pp. 1250-1254
    • Kossenkov, A.V.1    Peterson, A.J.2    Ochs, M.F.3
  • 40
    • 48249140218 scopus 로고    scopus 로고
    • Seeded Bayesian Networks: constructing genetic networks from microarray data
    • Djebbari A, Quackenbush J. Seeded Bayesian Networks: constructing genetic networks from microarray data. BMC Syst Biol 2008;2:57.
    • (2008) BMC Syst Biol , vol.2 , pp. 57
    • Djebbari, A.1    Quackenbush, J.2
  • 41
    • 65449141657 scopus 로고    scopus 로고
    • Identifying functional modules using expression profiles and confidence-scored protein interactions
    • Ulitsky I, Shamir R. Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinformatics 2009;25:1158-64.
    • (2009) Bioinformatics , vol.25 , pp. 1158-1164
    • Ulitsky, I.1    Shamir, R.2
  • 42
    • 39149143293 scopus 로고    scopus 로고
    • A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas
    • Mani KM, Lefebvre C, Wang K, et al. A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas. Mol Syst Biol 2008;4: 169.
    • (2008) Mol Syst Biol , vol.4 , pp. 169
    • Mani, K.M.1    Lefebvre, C.2    Wang, K.3
  • 43
    • 65649152557 scopus 로고    scopus 로고
    • Integrating shotgun proteomics and mRNA expression data to improve protein identification
    • Ramakrishnan SR, Vogel C, Prince JT, et al. Integrating shotgun proteomics and mRNA expression data to improve protein identification. Bioinformatics 2009;25:1397-403.
    • (2009) Bioinformatics , vol.25 , pp. 1397-1403
    • Ramakrishnan, S.R.1    Vogel, C.2    Prince, J.T.3
  • 44
    • 57249105121 scopus 로고    scopus 로고
    • Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models
    • Rogers S, Girolami M, Kolch W, et al. Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. Bioinformatics 2008;24:2894-900.
    • (2008) Bioinformatics , vol.24 , pp. 2894-2900
    • Rogers, S.1    Girolami, M.2    Kolch, W.3
  • 45
    • 54049083902 scopus 로고    scopus 로고
    • Genetic variants associated with carboplatin-induced cytotoxicity in cell lines derived from Africans
    • Huang RS, Duan S, Kistner EO, et al. Genetic variants associated with carboplatin-induced cytotoxicity in cell lines derived from Africans. Mol Cancer Ther 2008;7:3038-46.
    • (2008) Mol Cancer Ther , vol.7 , pp. 3038-3046
    • Huang, R.S.1    Duan, S.2    Kistner, E.O.3
  • 46
    • 34548256353 scopus 로고    scopus 로고
    • Identification of genetic variants contributing to cisplatin-induced cytotoxicity by use of a genomewide approach
    • Huang RS, Duan S, Shukla SJ, et al. Identification of genetic variants contributing to cisplatin-induced cytotoxicity by use of a genomewide approach. Am J Hum Genet 2007;81: 427-37.
    • (2007) Am J Hum Genet , vol.81 , pp. 427-437
    • Huang, R.S.1    Duan, S.2    Shukla, S.J.3
  • 47
    • 64549139680 scopus 로고    scopus 로고
    • An integrative scoring system for ranking SNPs by their potential deleterious effects
    • Lee PH, Shatkay H. An integrative scoring system for ranking SNPs by their potential deleterious effects. Bioinformatics 2009;25:1048-55.
    • (2009) Bioinformatics , vol.25 , pp. 1048-1055
    • Lee, P.H.1    Shatkay, H.2
  • 48
    • 69249115697 scopus 로고    scopus 로고
    • Cancer-specific Highthroughput Annotation of Somatic Mutations: computational prediction of driver missense mutations
    • Carter H, Chen S, Isik L, et al. Cancer-specific Highthroughput Annotation of Somatic Mutations: computational prediction of driver missense mutations. Cancer Res 2009;69:6660-7.
    • (2009) Cancer Res , vol.69 , pp. 6660-6667
    • Carter, H.1    Chen, S.2    Isik, L.3
  • 49
    • 52949127312 scopus 로고    scopus 로고
    • An integrated genomic analysis of human glioblastoma multiforme
    • Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321:1807-12.
    • (2008) Science , vol.321 , pp. 1807-1812
    • Parsons, D.W.1    Jones, S.2    Zhang, X.3
  • 50
    • 61449249266 scopus 로고    scopus 로고
    • Sequence-based prediction of protein interaction sites with an integrative method
    • Chen XW, Jeong JC. Sequence-based prediction of protein interaction sites with an integrative method. Bioinformatics 2009;25:585-91.
    • (2009) Bioinformatics , vol.25 , pp. 585-591
    • Chen, X.W.1    Jeong, J.C.2
  • 51
    • 49449089907 scopus 로고    scopus 로고
    • Genomics and genome-wide association studies: an integrative approach to expression QTL mapping
    • Degnan JH, Lasky-Su J, Raby BA, et al. Genomics and genome-wide association studies: an integrative approach to expression QTL mapping. Genomics 2008;92: 129-33.
    • (2008) Genomics , vol.92 , pp. 129-133
    • Degnan, J.H.1    Lasky-Su, J.2    Raby, B.A.3
  • 52
    • 54549108740 scopus 로고    scopus 로고
    • Comprehensive genomic characterization defines human glioblastoma genes and core, pathways
    • Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008;455: 1061-8.
    • (2008) Nature , vol.455 , pp. 1061-1068
  • 53
    • 34548388340 scopus 로고    scopus 로고
    • A multidimensional analysis of genes mutated in breast and colorectal cancers
    • Lin J, Gan CM, Zhang X, et al. A multidimensional analysis of genes mutated in breast and colorectal cancers. Genome Res 2007;17:1304-18.
    • (2007) Genome Res , vol.17 , pp. 1304-1318
    • Lin, J.1    Gan, C.M.2    Zhang, X.3
  • 55
    • 33749335282 scopus 로고    scopus 로고
    • The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease
    • Lamb J, Crawford ED, Peck D, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006;313: 1929-35.
    • (2006) Science , vol.313 , pp. 1929-1935
    • Lamb, J.1    Crawford, E.D.2    Peck, D.3
  • 56
    • 34249072202 scopus 로고    scopus 로고
    • Molecular concepts analysis links tumors, pathways, mechanisms, and drugs
    • Rhodes DR, Kalyana-Sundaram S, Tomlins SA, et al. Molecular concepts analysis links tumors, pathways, mechanisms, and drugs. Neoplasia 2007;9:443-54.
    • (2007) Neoplasia , vol.9 , pp. 443-454
    • Rhodes, D.R.1    Kalyana-Sundaram, S.2    Tomlins, S.A.3
  • 57
    • 33746428637 scopus 로고    scopus 로고
    • Predicting survival within the lung cancer histopathological hierarchy using a multi-scale genomic model of development
    • Liu H, Kho AT, Kohane IS, et al. Predicting survival within the lung cancer histopathological hierarchy using a multi-scale genomic model of development. PLoS Med 2006;3:e232.
    • (2006) PLoS Med , vol.3
    • Liu, H.1    Kho, A.T.2    Kohane, I.S.3
  • 58
    • 65349085291 scopus 로고    scopus 로고
    • Global networks of functional coupling in eukaryotes from comprehensive data integration
    • Alexeyenko A, Sonnhammer EL. Global networks of functional coupling in eukaryotes from comprehensive data integration. Genome Res 2009;19:1107-16.
    • (2009) Genome Res , vol.19 , pp. 1107-1116
    • Alexeyenko, A.1    Sonnhammer, E.L.2
  • 59
    • 52949087576 scopus 로고    scopus 로고
    • A genomewide functional network for the laboratory mouse
    • Guan Y, Myers CL, Lu R, et al. A genomewide functional network for the laboratory mouse. PLoS Comput Biol 2008; 4:e1000165.
    • (2008) PLoS Comput Biol , vol.4
    • Guan, Y.1    Myers, C.L.2    Lu, R.3
  • 60
    • 35348891430 scopus 로고    scopus 로고
    • Network-based classification of breast cancer metastasis
    • Chuang HY, Lee E, Liu YT, et al. Network-based classification of breast cancer metastasis. Mol Syst Biol 2007;3:140.
    • (2007) Mol Syst Biol , vol.3 , pp. 140
    • Chuang, H.Y.1    Lee, E.2    Liu, Y.T.3
  • 61
    • 34347326247 scopus 로고    scopus 로고
    • Network-based analysis of affected biological processes in type 2 diabetes models
    • Liu M, Liberzon A, Kong SW, et al. Network-based analysis of affected biological processes in type 2 diabetes models. PLoS Genet 2007;3:e96.
    • (2007) PLoS Genet , vol.3
    • Liu, M.1    Liberzon, A.2    Kong, S.W.3
  • 62
    • 64649098960 scopus 로고    scopus 로고
    • Integrated analysis of breast cancer cell lines reveals unique signaling pathways
    • Heiser LM, Wang NJ, Talcott CL, et al. Integrated analysis of breast cancer cell lines reveals unique signaling pathways. Genome Biol 2009;10:R31.
    • (2009) Genome Biol , vol.10
    • Heiser, L.M.1    Wang, N.J.2    Talcott, C.L.3
  • 63
    • 0034616930 scopus 로고    scopus 로고
    • Functional discovery via a compendium of expression profiles
    • Hughes TR, Marton MJ, Jones AR, et al. Functional discovery via a compendium of expression profiles. Cell 2000; 102:109-26.
    • (2000) Cell , vol.102 , pp. 109-126
    • Hughes, T.R.1    Marton, M.J.2    Jones, A.R.3
  • 64
    • 33645233956 scopus 로고    scopus 로고
    • Determination of strongly overlapping signaling activity from microarray data
    • Bidaut G, Suhre K, Claverie JM, et al. Determination of strongly overlapping signaling activity from microarray data. BMC Bioinformatics 2006;7:99.
    • (2006) BMC Bioinformatics , vol.7 , pp. 99
    • Bidaut, G.1    Suhre, K.2    Claverie, J.M.3
  • 65
    • 63649150787 scopus 로고    scopus 로고
    • A genomic strategy to elucidate modules of oncogenic pathway signaling networks
    • Chang JT, Carvalho C, Mori S, et al. A genomic strategy to elucidate modules of oncogenic pathway signaling networks. Mol Cell 2009;34:104-14.
    • (2009) Mol Cell , vol.34 , pp. 104-114
    • Chang, J.T.1    Carvalho, C.2    Mori, S.3
  • 66
    • 60149091657 scopus 로고    scopus 로고
    • Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression
    • Sreekumar A, Poisson LM, Rajendiran TM, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009;457:910-4.
    • (2009) Nature , vol.457 , pp. 910-914
    • Sreekumar, A.1    Poisson, L.M.2    Rajendiran, T.M.3
  • 67
    • 0035826155 scopus 로고    scopus 로고
    • Exploring complex networks
    • Strogatz SH. Exploring complex networks. Nature 2001; 410:268-76.
    • (2001) Nature , vol.410 , pp. 268-276
    • Strogatz, S.H.1
  • 69
    • 67849128700 scopus 로고    scopus 로고
    • BioPortal: ontologies and integrated data resources at the click of a mouse
    • Noy NF, Shah NH, Whetzel PL, et al. BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res 2009;37:W170-3.
    • (2009) Nucleic Acids Res , vol.37
    • Noy, N.F.1    Shah, N.H.2    Whetzel, P.L.3
  • 70
    • 0027339437 scopus 로고
    • The UMLS project: making the conceptual connection between users and the information they need
    • Humphreys BL, Lindberg DA. The UMLS project: making the conceptual connection between users and the information they need. Bull Med Libr Assoc 1993;81:170-7.
    • (1993) Bull Med Libr Assoc , vol.81 , pp. 170-177
    • Humphreys, B.L.1    Lindberg, D.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.