메뉴 건너뛰기




Volumn 25, Issue 3, 2009, Pages 322-330

Gene expression trends and protein features effectively complement each other in gene function prediction

Author keywords

[No Author keywords available]

Indexed keywords

CELL CYCLE PROTEIN;

EID: 59549105107     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btn625     Document Type: Article
Times cited : (6)

References (46)
  • 1
    • 0035344638 scopus 로고    scopus 로고
    • Immunology in the post-genomic era
    • Aderem,A and Hood,L. (2001) Immunology in the post-genomic era. Nat. Immuno̧l., 2, 373-375.
    • (2001) Nat. Immuno̧l , vol.2 , pp. 373-375
    • Aderem, A.1    Hood, L.2
  • 2
    • 25444482801 scopus 로고    scopus 로고
    • Speeding disease gene discovery by sequence based candidate prioritization
    • Adie,A.E. et al. (2005) Speeding disease gene discovery by sequence based candidate prioritization. BMC Bioinformatics, 6 55.
    • (2005) BMC Bioinformatics , vol.6 , pp. 55
    • Adie, A.E.1
  • 3
    • 33645976470 scopus 로고    scopus 로고
    • A rough knowledge base system
    • Edited by Science LNC, Springer, Berlin, Heidelberg, pp
    • Andersson,R. et al. (2005) A rough knowledge base system. In Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Vol. 3642 (Edited by Science LNC). Springer, Berlin, Heidelberg, pp. 48-58.
    • (2005) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing , vol.3642 , pp. 48-58
    • Andersson, R.1
  • 4
    • 0034069495 scopus 로고    scopus 로고
    • Gene Ontology: Tool for the unification of biology. The Gene Ontology Consortium
    • Ashburner,M. et al. (2000) Gene Ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet., 25, 25-29.
    • (2000) Nat. Genet , vol.25 , pp. 25-29
    • Ashburner, M.1
  • 5
    • 41749102443 scopus 로고    scopus 로고
    • Optimal bin number for equal frequency discretizations in supervised learning
    • Boulle,M. (2005) Optimal bin number for equal frequency discretizations in supervised learning. Int. Data Anal., 9, 175-188.
    • (2005) Int. Data Anal , vol.9 , pp. 175-188
    • Boulle, M.1
  • 6
    • 38549173606 scopus 로고    scopus 로고
    • The BioGRID interaction database: 2008 update
    • Breitkreutz,B. et al. (2008) The BioGRID interaction database: 2008 update. Nucleic Acids Res., 36, 637-640.
    • (2008) Nucleic Acids Res , vol.36 , pp. 637-640
    • Breitkreutz, B.1
  • 7
    • 0034602774 scopus 로고    scopus 로고
    • Knowledge-based analysis of microarray gene expression data by using support vector machines
    • Brown,M.P. et al. (2000) Knowledge-based analysis of microarray gene expression data by using support vector machines. Genetics, 97, 262-267.
    • (2000) Genetics , vol.97 , pp. 262-267
    • Brown, M.P.1
  • 8
    • 2442642905 scopus 로고    scopus 로고
    • Identification of genes encoding putative nucleoporins and transport factors in the fission yeast Schizosacchammyces pombe: A deletion analysis
    • Chen,X. et al. (2004) Identification of genes encoding putative nucleoporins and transport factors in the fission yeast Schizosacchammyces pombe: A deletion analysis. Yeast, 21, 495-509.
    • (2004) Yeast , vol.21 , pp. 495-509
    • Chen, X.1
  • 9
    • 36949038721 scopus 로고    scopus 로고
    • An efficient strategy for extensixe integration of diverse biological data for protein function prediction
    • Chua,H.N. et al. (2007) An efficient strategy for extensixe integration of diverse biological data for protein function prediction. Bioinformatics, 23, 3364-3373.
    • (2007) Bioinformatics , vol.23 , pp. 3364-3373
    • Chua, H.N.1
  • 11
    • 21044444707 scopus 로고    scopus 로고
    • Markers of adenocarcinoma characteristic of die site of origin: Development of a diagnostic algorithm
    • Dennis,J. et al. (2005) Markers of adenocarcinoma characteristic of die site of origin: Development of a diagnostic algorithm. Clin. Cancer Res., 11, 3766-3772.
    • (2005) Clin. Cancer Res , vol.11 , pp. 3766-3772
    • Dennis, J.1
  • 12
    • 0021432656 scopus 로고
    • Selecting an extreme-value distribution and the transforming to a specified distribution
    • Hernandez,F. and Johnson,R.A. (1984) Selecting an extreme-value distribution and the transforming to a specified distribution. Oper. Res., 32, 715-725.
    • (1984) Oper. Res , vol.32 , pp. 715-725
    • Hernandez, F.1    Johnson, R.A.2
  • 13
    • 0035044077 scopus 로고    scopus 로고
    • Assessment of prediction accuracy of protein function from protein-protein interaction data
    • Hishigaki,H. et al. (2001) Assessment of prediction accuracy of protein function from protein-protein interaction data. Yeast, 18, 523-531.
    • (2001) Yeast , vol.18 , pp. 523-531
    • Hishigaki, H.1
  • 14
    • 20044372938 scopus 로고    scopus 로고
    • Identification and characterization of protein subcomplexes in yeast
    • Hollunder,J. et al. (2005) Identification and characterization of protein subcomplexes in yeast. Proteomics, 5, 2082-2089.
    • (2005) Proteomics , vol.5 , pp. 2082-2089
    • Hollunder, J.1
  • 15
    • 0031760687 scopus 로고    scopus 로고
    • Neural network-based prediction of candidate T-cell epitopes
    • Honeyman,M.C. et al. (1998) Neural network-based prediction of candidate T-cell epitopes. Nat. Biotechnol., 16, 966-969.
    • (1998) Nat. Biotechnol , vol.16 , pp. 966-969
    • Honeyman, M.C.1
  • 16
    • 0035229817 scopus 로고    scopus 로고
    • Predicting gene function from gene expressions and ontologies
    • Hvidsten,T. et al. (2001) Predicting gene function from gene expressions and ontologies. Pac. Symp. Biocomput., 299-310.
    • (2001) Pac. Symp. Biocomput , pp. 299-310
    • Hvidsten, T.1
  • 17
    • 0038729567 scopus 로고    scopus 로고
    • Learning rule-based models of biological process from gene expression time profiles using gene ontology
    • Hvidsten,T. et al. (2003) Learning rule-based models of biological process from gene expression time profiles using gene ontology. Bioinformatics, 19, 1116-1123.
    • (2003) Bioinformatics , vol.19 , pp. 1116-1123
    • Hvidsten, T.1
  • 18
    • 22344449795 scopus 로고    scopus 로고
    • Discovering regulatory binding site modules using rule-based learning
    • Hvidsten,T. et al. (2005) Discovering regulatory binding site modules using rule-based learning. Genome Res., 15, 856-866.
    • (2005) Genome Res , vol.15 , pp. 856-866
    • Hvidsten, T.1
  • 19
    • 0032990408 scopus 로고    scopus 로고
    • A complete BAC-based physical map of the Arabidopsis thaliana genome
    • Jensen,L. et al. (1999) A complete BAC-based physical map of the Arabidopsis thaliana genome. Nat Genet., 22, 271-275.
    • (1999) Nat Genet , vol.22 , pp. 271-275
    • Jensen, L.1
  • 20
    • 18444390875 scopus 로고    scopus 로고
    • Prediction of human protein function from post-translational modifications and localization features
    • Jensen,L. et al. (2002) Prediction of human protein function from post-translational modifications and localization features. J. Mol. Biol., 316, 1257-1265.
    • (2002) J. Mol. Biol , vol.316 , pp. 1257-1265
    • Jensen, L.1
  • 21
    • 0242490786 scopus 로고    scopus 로고
    • Functionality of system components: Conservation of protein function in protein feature space
    • Jensen,L. et al. (2003) Functionality of system components: conservation of protein function in protein feature space. Genome Res., 13, 2444-2449.
    • (2003) Genome Res , vol.13 , pp. 2444-2449
    • Jensen, L.1
  • 24
    • 59549086394 scopus 로고    scopus 로고
    • Komorowski,H.J. (2092) Modelling biological phenomena with rough sets. In Alpigini,J.J. et al.., (eds), Proceedings of the Third International Conference on Rough Sets and Current Trends in Computing, Lecture Notes In Computer Science, Malvern, PA, USA, October 14-16. 2475, Springer, Berlin, Heidelberg, p. 949.
    • Komorowski,H.J. (2092) Modelling biological phenomena with rough sets. In Alpigini,J.J. et al.., (eds), Proceedings of the Third International Conference on Rough Sets and Current Trends in Computing, Lecture Notes In Computer Science, Malvern, PA, USA, October 14-16. Vol. 2475, Springer, Berlin, Heidelberg, p. 949.
  • 25
    • 34250675995 scopus 로고    scopus 로고
    • TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis
    • Koyama,T. et al. (2007) TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell, 19, 473-484.
    • (2007) Plant Cell , vol.19 , pp. 473-484
    • Koyama, T.1
  • 26
    • 0038781869 scopus 로고    scopus 로고
    • Predicting Gene Ontology biological process from temporal gene expression patterns
    • Lægreid,A. et al. (2003) Predicting Gene Ontology biological process from temporal gene expression patterns. Genome Res., 13 965-979.
    • (2003) Genome Res , vol.13 , pp. 965-979
    • Lægreid, A.1
  • 27
    • 0038412810 scopus 로고    scopus 로고
    • Protein feature based identification of cell cycle regulated proteins in yeast
    • Lichtenberg,U. et al. (2003) Protein feature based identification of cell cycle regulated proteins in yeast. J. Mol. Biol., 329 149-170.
    • (2003) J. Mol. Biol , vol.329 , pp. 149-170
    • Lichtenberg, U.1
  • 28
    • 24044440971 scopus 로고    scopus 로고
    • A Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks
    • Maere,S. et al. (2005) A Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 21, 3448-3449.
    • (2005) Bioinformatics , vol.21 , pp. 3448-3449
    • Maere, S.1
  • 29
    • 0037338297 scopus 로고    scopus 로고
    • Data analysis: The Achilles heel of proteomics
    • Patterson,S. (2003) Data analysis: The Achilles heel of proteomics. Nat. Biotechnol., 21, 221-222.
    • (2003) Nat. Biotechnol , vol.21 , pp. 221-222
    • Patterson, S.1
  • 30
    • 0010518383 scopus 로고
    • Rough Sets: Theoretical aspects of reasoning about data
    • 1st edn, Kluwer Academic Publishers, Norwell, MA, USA, pp
    • Pawlak,Z. (1992) Rough Sets: Theoretical aspects of reasoning about data. In Theory Decision Lib. Vol. 9, 1st edn, Kluwer Academic Publishers, Norwell, MA, USA, pp. 1-229.
    • (1992) Theory Decision Lib , vol.9 , pp. 1-229
    • Pawlak, Z.1
  • 31
    • 0035375137 scopus 로고    scopus 로고
    • Computational analysis of microarray data
    • Quackenbush,J. (2001) Computational analysis of microarray data. Nat. Rev. Genet., 2, 418-428.
    • (2001) Nat. Rev. Genet , vol.2 , pp. 418-428
    • Quackenbush, J.1
  • 32
    • 33748313061 scopus 로고    scopus 로고
    • Ppc89 links multiple proteins, including the septation initiation network, to the core of the fission yeast spindle-pole body
    • Rosenberg,J. et al. (2006) Ppc89 links multiple proteins, including the septation initiation network, to the core of the fission yeast spindle-pole body. Mol. Biol. Cell, 17, 3793-3805.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 3793-3805
    • Rosenberg, J.1
  • 33
    • 3543042493 scopus 로고    scopus 로고
    • Periodic gene expression program of the fission yeast cell cycle
    • Rustici,G. et al. (2004) Periodic gene expression program of the fission yeast cell cycle. Nat. Genet., 36, 809-817.
    • (2004) Nat. Genet , vol.36 , pp. 809-817
    • Rustici, G.1
  • 34
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • Schena,M. et al. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467-470.
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1
  • 35
    • 45149101194 scopus 로고    scopus 로고
    • Current approaches to gene regulatory network modelling
    • Schlitt,T. and Brazma,A. (2007) Current approaches to gene regulatory network modelling. BMC Bioinformatics, 8, s9.
    • (2007) BMC Bioinformatics , vol.8
    • Schlitt, T.1    Brazma, A.2
  • 36
    • 0035284320 scopus 로고    scopus 로고
    • Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values
    • Schneider,T. (2001) Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values. J. Clim., 14, 853-871.
    • (2001) J. Clim , vol.14 , pp. 853-871
    • Schneider, T.1
  • 37
    • 0030242350 scopus 로고    scopus 로고
    • A parallel algorithm for real-time decision making: A Rough Set approach
    • Skowron,A. and Suraj,Z. (1996) A parallel algorithm for real-time decision making: A Rough Set approach. J. Int. Inform. Syst., 7 15-28.
    • (1996) J. Int. Inform. Syst , vol.7 , pp. 15-28
    • Skowron, A.1    Suraj, Z.2
  • 38
    • 0036948440 scopus 로고    scopus 로고
    • Application of rule induction and Rough Sets to verification of magnetic resonance diagnosis
    • Slowiñski,K. et al. (2002) Application of rule induction and Rough Sets to verification of magnetic resonance diagnosis. Fundam. Inf., 53, 345-363.
    • (2002) Fundam. Inf , vol.53 , pp. 345-363
    • Slowiñski, K.1
  • 39
    • 10044262966 scopus 로고    scopus 로고
    • An empirical comparison of supervised machine learning techniques in bioinformatics
    • Adelaide, Australia, Australian Computer Science Inc, Darlinghurst, Australia, pp
    • Tan,A.C. and Gilbert,D. (2003) An empirical comparison of supervised machine learning techniques in bioinformatics. In Proceedings of the First Asia Pacific Bioinformatics conference, Vol. 19, Adelaide, Australia, Australian Computer Science Inc., Darlinghurst, Australia, pp. 219-222.
    • (2003) Proceedings of the First Asia Pacific Bioinformatics conference , vol.19 , pp. 219-222
    • Tan, A.C.1    Gilbert, D.2
  • 40
    • 33344469496 scopus 로고    scopus 로고
    • A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles
    • Tikunov,Y. et al. (2005) A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol., 139, 1125-1137.
    • (2005) Plant Physiol , vol.139 , pp. 1125-1137
    • Tikunov, Y.1
  • 41
    • 34547137389 scopus 로고    scopus 로고
    • A tandem affinity purification-based technology platform to study the cell cycle interactome in Arabidopsis thaliana
    • Van Leene,J. et al. (2007) A tandem affinity purification-based technology platform to study the cell cycle interactome in Arabidopsis thaliana. Mol. Cell Proteomics, 6, 1226-1238.
    • (2007) Mol. Cell Proteomics , vol.6 , pp. 1226-1238
    • Van Leene, J.1
  • 42
    • 33645967150 scopus 로고    scopus 로고
    • AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1
    • Vaucheret,H. et al. (2006) AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol. Cell, 22, 129-136.
    • (2006) Mol. Cell , vol.22 , pp. 129-136
    • Vaucheret, H.1
  • 43
    • 0001206731 scopus 로고    scopus 로고
    • Minimal approximate hitting sets and rule templates
    • Vinterbo,S. and Øhrn,A. (2000) Minimal approximate hitting sets and rule templates. Int. J. Approx. Reason, 25, 123-143.
    • (2000) Int. J. Approx. Reason , vol.25 , pp. 123-143
    • Vinterbo, S.1    Øhrn, A.2
  • 44
    • 0033452362 scopus 로고    scopus 로고
    • Prediction of gene function by genome-scale expression analysis: Prostate cancer-associated genes
    • Walker,M. et al. (1999) Prediction of gene function by genome-scale expression analysis: Prostate cancer-associated genes. Genome Res., 9, 1198-1203.
    • (1999) Genome Res , vol.9 , pp. 1198-1203
    • Walker, M.1
  • 45
    • 0036649020 scopus 로고    scopus 로고
    • Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters
    • Wu,L. et al. (2002) Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters. Nat. Genet., 31, 255-265.
    • (2002) Nat. Genet , vol.31 , pp. 255-265
    • Wu, L.1
  • 46
    • 0037667290 scopus 로고    scopus 로고
    • Clustering gene expression data with repeated measurements
    • Yeung,K. et al. (2003) Clustering gene expression data with repeated measurements. Genome Biol., 4, s34.
    • (2003) Genome Biol , vol.4
    • Yeung, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.