메뉴 건너뛰기




Volumn 20, Issue 11, 2008, Pages 2696-2714

Parameters of the diffusion leaky integrate-and-fire neuronal model for a slowly fluctuating signal

Author keywords

[No Author keywords available]

Indexed keywords

ACTION POTENTIAL; ANIMAL; ARTICLE; BIOLOGICAL MODEL; CELL MEMBRANE POTENTIAL; GUINEA PIG; NERVE CELL; NONLINEAR SYSTEM; PHYSIOLOGY; SIGNAL TRANSDUCTION; STATISTICS; TIME;

EID: 55749107079     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2008.11-07-653     Document Type: Article
Times cited : (21)

References (48)
  • 2
    • 55749088942 scopus 로고    scopus 로고
    • Available online at
    • Barrowes, B. (2007). Multiple precision toolbox for Matlab. Available online at http://www.mathworks.com/matlabcentral/fileexchange/ loadFile.do?objectId=6446&objectType=File.
    • (2007) Multiple precision toolbox for Matlab
    • Barrowes, B.1
  • 3
    • 40749088917 scopus 로고    scopus 로고
    • Lapicque's 1907 paper: From frogs to integrate-and-fire
    • Brunel, N., & van Rossum, M. C. W. (2007). Lapicque's 1907 paper: From frogs to integrate-and-fire. Biol. Cybern., 97, 337-339.
    • (2007) Biol. Cybern , vol.97 , pp. 337-339
    • Brunel, N.1    van Rossum, M.C.W.2
  • 4
    • 33745712258 scopus 로고    scopus 로고
    • A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input
    • Burkitt, A. N. (2006). A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol. Cybern., 95, 1-19.
    • (2006) Biol. Cybern , vol.95 , pp. 1-19
    • Burkitt, A.N.1
  • 6
    • 34247491502 scopus 로고    scopus 로고
    • Predicting neuronal activity with simple models of the threshold type: Adaptive exponential integrate-and-fire model with two compartments
    • Clopath, C., Jolivet, R., Rauch, A., Lüscher, H.-R., & Gerstner, W. (2007). Predicting neuronal activity with simple models of the threshold type: Adaptive exponential integrate-and-fire model with two compartments. Neurocomput., 70, 1668-1673.
    • (2007) Neurocomput , vol.70 , pp. 1668-1673
    • Clopath, C.1    Jolivet, R.2    Rauch, A.3    Lüscher, H.-R.4    Gerstner, W.5
  • 10
    • 45749127284 scopus 로고    scopus 로고
    • Mixed effects in stochastic differential equations models
    • Ditlevsen, S., & De Gaetano, A. (2005). Mixed effects in stochastic differential equations models. REVSTAT - Statistical Journal, 3(2), 137-153.
    • (2005) REVSTAT - Statistical Journal , vol.3 , Issue.2 , pp. 137-153
    • Ditlevsen, S.1    De Gaetano, A.2
  • 11
    • 41549100101 scopus 로고    scopus 로고
    • Parameter estimation from observations of first-passage times of the Ornstein-Uhlenbeck process and the Feller process
    • Ditlevsen, S., & Ditlevsen, O. (2008). Parameter estimation from observations of first-passage times of the Ornstein-Uhlenbeck process and the Feller process. Prob. Eng. Mech., 23, 170-179.
    • (2008) Prob. Eng. Mech , vol.23 , pp. 170-179
    • Ditlevsen, S.1    Ditlevsen, O.2
  • 12
    • 37649030460 scopus 로고    scopus 로고
    • Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model
    • Ditlevsen, S., & Lansky, P. (2005). Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model. Phys. Rev. E, 71, 011907.
    • (2005) Phys. Rev. E , vol.71 , pp. 011907
    • Ditlevsen, S.1    Lansky, P.2
  • 13
    • 33745189627 scopus 로고    scopus 로고
    • Estimation of the input parameters in the Feller neuronal model
    • Ditlevsen, S., & Lansky, P. (2006). Estimation of the input parameters in the Feller neuronal model. Phys. Rev. E, 73, 061910.
    • (2006) Phys. Rev. E , vol.73 , pp. 061910
    • Ditlevsen, S.1    Lansky, P.2
  • 14
    • 35248883957 scopus 로고    scopus 로고
    • Parameters of stochastic diffusion processes estimated from observations of first hitting-times: Application to the leaky integrate-and-fire neuronal model
    • Ditlevsen, S., & Lansky, P. (2007). Parameters of stochastic diffusion processes estimated from observations of first hitting-times: Application to the leaky integrate-and-fire neuronal model. Phys. Rev. E, 76, 041906.
    • (2007) Phys. Rev. E , vol.76 , pp. 041906
    • Ditlevsen, S.1    Lansky, P.2
  • 15
    • 55749092754 scopus 로고    scopus 로고
    • Parametric inference for mixed models defined by stochastic differential equations
    • Donnet, S., & Samson, A. (2008). Parametric inference for mixed models defined by stochastic differential equations. ESAIM: Probability and Statistics, 12, 196-218.
    • (2008) ESAIM: Probability and Statistics , vol.12 , pp. 196-218
    • Donnet, S.1    Samson, A.2
  • 16
    • 0010964703 scopus 로고
    • Upper Saddle River, NJ: Benjamin/Cummings
    • Fröberg, C. E. (1985). Numerical mathematics. Upper Saddle River, NJ: Benjamin/Cummings.
    • (1985) Numerical mathematics
    • Fröberg, C.E.1
  • 18
    • 0010394749 scopus 로고
    • Inference for stochastic neuronal models
    • Habib, M. K., & Thavaneswaran, A. (1990). Inference for stochastic neuronal models. Applied Math. Comput., 38, 51-73.
    • (1990) Applied Math. Comput , vol.38 , pp. 51-73
    • Habib, M.K.1    Thavaneswaran, A.2
  • 19
    • 34248523849 scopus 로고    scopus 로고
    • On a set of data for the membrane potential in a neuron
    • Höpfner, R. (2007). On a set of data for the membrane potential in a neuron. Math. Biosci., 207, 275-301.
    • (2007) Math. Biosci , vol.207 , pp. 275-301
    • Höpfner, R.1
  • 20
    • 33746752672 scopus 로고    scopus 로고
    • Efficient estimation of detailed single-neuron models
    • Huys, Q. J. M., Ahrens, M. B., & Paninski, L. (2006). Efficient estimation of detailed single-neuron models. J. Neurophysiol., 96, 872-890.
    • (2006) J. Neurophysiol , vol.96 , pp. 872-890
    • Huys, Q.J.M.1    Ahrens, M.B.2    Paninski, L.3
  • 21
    • 0029355301 scopus 로고
    • On the parameter estimation for diffusion models of single neurons' activity
    • Inoue, J., Sato, S., & Ricciardi, L. M. (1995). On the parameter estimation for diffusion models of single neurons' activity. Biol. Cybern., 73, 209-221.
    • (1995) Biol. Cybern , vol.73 , pp. 209-221
    • Inoue, J.1    Sato, S.2    Ricciardi, L.M.3
  • 22
    • 3142666109 scopus 로고    scopus 로고
    • Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy
    • Jolivet, R., Lewis, T. J., & Gerstner, W. (2004). Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J. Neurophysiol., 92, 959-976.
    • (2004) J. Neurophysiol , vol.92 , pp. 959-976
    • Jolivet, R.1    Lewis, T.J.2    Gerstner, W.3
  • 23
    • 33745833056 scopus 로고    scopus 로고
    • Predicting spike timing of neocortical pyramidal neurons by simple threshold models
    • Jolivet, R., Rauch, A., Lüscher, H.-R., & Gerstner, W. (2006). Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J. Comput. Neurosci., 21, 35-49.
    • (2006) J. Comput. Neurosci , vol.21 , pp. 35-49
    • Jolivet, R.1    Rauch, A.2    Lüscher, H.-R.3    Gerstner, W.4
  • 26
    • 4344670177 scopus 로고    scopus 로고
    • Minimal models of adapted neuronal response to in vivo-like input currents
    • La Camera, G., Rauch, A., Lüscher, H.-R., Senn, W., & Fusi, S. (2004). Minimal models of adapted neuronal response to in vivo-like input currents. Neural Comput., 16, 2101-2124.
    • (2004) Neural Comput , vol.16 , pp. 2101-2124
    • La Camera, G.1    Rauch, A.2    Lüscher, H.-R.3    Senn, W.4    Fusi, S.5
  • 27
    • 0032212528 scopus 로고    scopus 로고
    • Input parameters in a one-dimensional neuronal model with reversal potentials
    • Lanska, V., & Lansky, P. (1998). Input parameters in a one-dimensional neuronal model with reversal potentials. Biosystems, 48, 123-129.
    • (1998) Biosystems , vol.48 , pp. 123-129
    • Lanska, V.1    Lansky, P.2
  • 28
    • 0021076773 scopus 로고
    • Inference for diffusion models of neuronal activity
    • Lansky, P. (1983). Inference for diffusion models of neuronal activity. Math. Biosci., 67, 247-260.
    • (1983) Math. Biosci , vol.67 , pp. 247-260
    • Lansky, P.1
  • 29
    • 0035796609 scopus 로고    scopus 로고
    • The Ornstein-Uhlenbeck neuronal model with signal-dependent noise
    • Lansky, P., & Sacerdote, L. (2001). The Ornstein-Uhlenbeck neuronal model with signal-dependent noise. Physics Letters A, 285, 132-140.
    • (2001) Physics Letters A , vol.285 , pp. 132-140
    • Lansky, P.1    Sacerdote, L.2
  • 30
    • 33747272940 scopus 로고    scopus 로고
    • The parameters of the stochastic leaky integrate-and-fire neuronal model
    • Lansky, P., Sanda, P., & He, J. (2006). The parameters of the stochastic leaky integrate-and-fire neuronal model. J. Comput. Neurosci., 21, 211-223.
    • (2006) J. Comput. Neurosci , vol.21 , pp. 211-223
    • Lansky, P.1    Sanda, P.2    He, J.3
  • 33
    • 34748913632 scopus 로고    scopus 로고
    • A Matlab framework for estimation of NLME models using stochastic differential equations: Applications for estimation of insulin secretion rates
    • Mortensen, S. B., Klim, S., Dammann, B., Kristensen, N. R., Madsen, H., & Overgaard, R. (2007). A Matlab framework for estimation of NLME models using stochastic differential equations: Applications for estimation of insulin secretion rates. J. Pharmacokinet. Pharmacodyn., 34(5), 623-642.
    • (2007) J. Pharmacokinet. Pharmacodyn , vol.34 , Issue.5 , pp. 623-642
    • Mortensen, S.B.1    Klim, S.2    Dammann, B.3    Kristensen, N.R.4    Madsen, H.5    Overgaard, R.6
  • 34
    • 23844551829 scopus 로고    scopus 로고
    • Non-linear mixed effects models with stochastic differential equations: Implementation of an estimation algorithm
    • Overgaard, R. V., Jonsson, N., Tornøe, C. W., & Madsen, H. (2005). Non-linear mixed effects models with stochastic differential equations: Implementation of an estimation algorithm. J. Pharmacokinet. Pharmacodyn., 32, 85-107.
    • (2005) J. Pharmacokinet. Pharmacodyn , vol.32 , pp. 85-107
    • Overgaard, R.V.1    Jonsson, N.2    Tornøe, C.W.3    Madsen, H.4
  • 35
    • 9744239998 scopus 로고    scopus 로고
    • Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model
    • Paninski, L., Pillow, J. W., & Simoncelli, E. P. (2004). Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Comput., 16, 2533-2561.
    • (2004) Neural Comput , vol.16 , pp. 2533-2561
    • Paninski, L.1    Pillow, J.W.2    Simoncelli, E.P.3
  • 36
    • 18144381247 scopus 로고    scopus 로고
    • Comparing integrate-and-fire-models estimated using intracellular and extracellular data
    • Paninski, L., Pillow, J., & Simoncelli, E. (2005). Comparing integrate-and-fire-models estimated using intracellular and extracellular data. Neurocomputing, 65-66, 379-385.
    • (2005) Neurocomputing , vol.65-66 , pp. 379-385
    • Paninski, L.1    Pillow, J.2    Simoncelli, E.3
  • 37
    • 55749092589 scopus 로고    scopus 로고
    • Parameter estimation in stochastic differential mixed-effects models
    • 06/12, Copenhagen: Department of Biostatistics, University of Copenhagen
    • Picchini, U., De Gaetano, A., & Ditlevsen, S. (2006). Parameter estimation in stochastic differential mixed-effects models (Tech. Rep. 06/12). Copenhagen: Department of Biostatistics, University of Copenhagen.
    • (2006) Tech. Rep
    • Picchini, U.1    De Gaetano, A.2    Ditlevsen, S.3
  • 39
    • 55749099307 scopus 로고    scopus 로고
    • Pinheiro, J. C, Bates, D. M, DebRoy, S, Sarkar, D, & R Core Team, 2007, nlme: Linear and nonlinear mixed effects models. The R Foundation for Statistical Computing. R package version 3.1-86 available online at
    • Pinheiro, J. C., Bates, D. M., DebRoy, S., Sarkar, D., & R Core Team. (2007). nlme: Linear and nonlinear mixed effects models. The R Foundation for Statistical Computing. R package version 3.1-86 available online at http://www.r-project.org/.
  • 40
    • 0030051231 scopus 로고    scopus 로고
    • Experimental evaluation of input-output models of motoneuron discharge
    • Powers, R. K., & Binder, M. D. (1996). Experimental evaluation of input-output models of motoneuron discharge. J. Neurophysiol., 75, 367-379.
    • (1996) J. Neurophysiol , vol.75 , pp. 367-379
    • Powers, R.K.1    Binder, M.D.2
  • 41
    • 0141565240 scopus 로고    scopus 로고
    • Neocortical pyramidal cells respond as integrate-and fire neurons in vivo-like input currents
    • Rauch, A., La Camera, G., Lüscher, H.-R., Senn, W., & Fusi, S. (2003). Neocortical pyramidal cells respond as integrate-and fire neurons in vivo-like input currents. J. Neurophysiol., 90, 1598-1612.
    • (2003) J. Neurophysiol , vol.90 , pp. 1598-1612
    • Rauch, A.1    La Camera, G.2    Lüscher, H.-R.3    Senn, W.4    Fusi, S.5
  • 43
    • 0003126612 scopus 로고
    • Table of the zeros and weight factors of the first twenty Hermite polynomials
    • Available online at
    • Salzer, H. E., Zucker, R., & Capuano, R. (1952). Table of the zeros and weight factors of the first twenty Hermite polynomials. Journal of Research of the National Bureau of Standards, 48, 111-116. Available online at http://nvl.nist.gov/pub/nistpubs/jres/048/2/V48.N02.A04.pdf.
    • (1952) Journal of Research of the National Bureau of Standards , vol.48 , pp. 111-116
    • Salzer, H.E.1    Zucker, R.2    Capuano, R.3
  • 44
    • 0033561846 scopus 로고    scopus 로고
    • The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex
    • Shinomoto, S., Sakai, Y., & Funahashi, S. (1999). The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex. Neural Comput., 11, 935-951.
    • (1999) Neural Comput , vol.11 , pp. 935-951
    • Shinomoto, S.1    Sakai, Y.2    Funahashi, S.3
  • 45
    • 23844485993 scopus 로고    scopus 로고
    • Stochastic differential equations in NONMEM: Implementation, application, and comparison with ordinary differential equations
    • Tornøe, C. W., Overgaard, R. V., Agersø, H., Nielsen, H. A., Madsen, H., & Jonsson, E. N. (2005). Stochastic differential equations in NONMEM: Implementation, application, and comparison with ordinary differential equations. Pharmaceutical Research, 22(8), 1247-1258.
    • (2005) Pharmaceutical Research , vol.22 , Issue.8 , pp. 1247-1258
    • Tornøe, C.W.1    Overgaard, R.V.2    Agersø, H.3    Nielsen, H.A.4    Madsen, H.5    Jonsson, E.N.6
  • 46
    • 0842277469 scopus 로고
    • Introduction to theoretical neurobiology
    • Cambridge: Cambridge University Press
    • Tuckwell, H. C. (1988). Introduction to theoretical neurobiology, Vol. 2: Nonlinear and stochastic theories. Cambridge: Cambridge University Press.
    • (1988) Nonlinear and stochastic theories , vol.2
    • Tuckwell, H.C.1
  • 47
    • 0017799081 scopus 로고
    • Neuronal interspike time distributions and the estimation of neurophysiological and neuroanatomical parameters
    • Tuckwell, H. C., & Richter, W. (1978). Neuronal interspike time distributions and the estimation of neurophysiological and neuroanatomical parameters. J. Theor. Biol., 71, 167-180.
    • (1978) J. Theor. Biol , vol.71 , pp. 167-180
    • Tuckwell, H.C.1    Richter, W.2
  • 48
    • 1642546600 scopus 로고    scopus 로고
    • Corticofugal gating of auditory information in the thalamus: An in vivo intracellular recording study
    • Yu, Y. Q., Xiong, Y., Chan, Y. S., & He, J. F. (2004). Corticofugal gating of auditory information in the thalamus: An in vivo intracellular recording study. J. Neurosci., 24, 3060-3069.
    • (2004) J. Neurosci , vol.24 , pp. 3060-3069
    • Yu, Y.Q.1    Xiong, Y.2    Chan, Y.S.3    He, J.F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.