메뉴 건너뛰기




Volumn 9, Issue , 2008, Pages 2607-2633

Model selection for regression with continuous kernel functions using the modulus of continuity

Author keywords

Information criteria; Model selection; Modulus of continuity; Multilayer perceptrons; Regression models

Indexed keywords

CYBERNETICS; ELECTRIC LOADS; FORECASTING; MULTILAYERS; NEURAL NETWORKS; PATTERN RECOGNITION SYSTEMS; POLYNOMIAL APPROXIMATION; PROBABILITY DENSITY FUNCTION; RISK PERCEPTION;

EID: 57249114552     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (6)

References (22)
  • 3
  • 5
    • 0036643075 scopus 로고    scopus 로고
    • Model selection for small sample regression
    • O. Chapelle, V. Vapnik, and Y. Bengio. Model selection for small sample regression. Machine Learning, 48:315-333, 2002.
    • (2002) Machine Learning , vol.48 , pp. 315-333
    • Chapelle, O.1    Vapnik, V.2    Bengio, Y.3
  • 6
    • 0037484691 scopus 로고    scopus 로고
    • Comparison of model selection for regression
    • V. Cherkassky and Y. Ma. Comparison of model selection for regression. Neural Computation, 15:1691-1714, 2003.
    • (2003) Neural Computation , vol.15 , pp. 1691-1714
    • Cherkassky, V.1    Ma, Y.2
  • 10
    • 21844523862 scopus 로고
    • The risk inflation criterion for multiple regression
    • D. Foster and E. George. The risk inflation criterion for multiple regression. Annals of Statistics, 22:1947-1975, 1994.
    • (1994) Annals of Statistics , vol.22 , pp. 1947-1975
    • Foster, D.1    George, E.2
  • 11
    • 0038498501 scopus 로고    scopus 로고
    • T. Hastie, R. Tibshirani, and J. Friedman. Note on comparison of model selection for regression by V. Cherkassky and Y. Ma. Neural Computation, 15:1477-1480, 2003.
    • T. Hastie, R. Tibshirani, and J. Friedman. Note on "comparison of model selection for regression" by V. Cherkassky and Y. Ma. Neural Computation, 15:1477-1480, 2003.
  • 13
  • 17
    • 0000318553 scopus 로고
    • Stochastic complexity and modeling
    • J. Rissanen. Stochastic complexity and modeling. Annals of Statistics, 14:1080-1100, 1986.
    • (1986) Annals of Statistics , vol.14 , pp. 1080-1100
    • Rissanen, J.1
  • 18
    • 0141578206 scopus 로고
    • Polynomial bounds for the VC dimension of sigmoidal, radial basis function, and sigmapi networks
    • A. Sakurai. Polynomial bounds for the VC dimension of sigmoidal, radial basis function, and sigmapi networks. In Proceedings of the World Congress on Neural Networks, pages 58-63, 1995.
    • (1995) Proceedings of the World Congress on Neural Networks , pp. 58-63
    • Sakurai, A.1
  • 19
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwartz. Estimating the dimension of a model. Annals of Statistics, 6:461-464, 1978.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwartz, G.1
  • 20
    • 0003401602 scopus 로고
    • Theory of Approximation of Functions of a Real Variable
    • Pergaman Press, Russian original published in Moscow by Fizmatgiz in
    • A. Timan. Theory of Approximation of Functions of a Real Variable. English translation 1963, Pergaman Press, Russian original published in Moscow by Fizmatgiz in 1960.
    • (1960) English translation 1963
    • Timan, A.1
  • 22
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • G. Wahba, G.Golub, and M. Heath. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21:215-223, 1979.
    • (1979) Technometrics , vol.21 , pp. 215-223
    • Wahba, G.1    Golub, G.2    Heath, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.