메뉴 건너뛰기




Volumn 43, Issue 6, 2010, Pages 2106-2118

Bagging Constraint Score for feature selection with pairwise constraints

Author keywords

Bagging; Constraint Score; Ensemble learning; Feature selection; Pairwise constraints

Indexed keywords

CARDINALITIES; CONSTRAINT SET; DATA SETS; ENSEMBLE LEARNING; FEATURE SELECTION; FEATURE SELECTION METHODS; FISHER SCORE; HIGH-DIMENSIONAL; MULTIPLE CONSTRAINT; PAIRWISE CONSTRAINTS; RESAMPLING; SINGLE CONSTRAINT; UCI REPOSITORY;

EID: 76749107911     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2009.12.011     Document Type: Article
Times cited : (51)

References (51)
  • 3
    • 54549099006 scopus 로고    scopus 로고
    • Performance of feature-selection methods in the classification of high-dimension data
    • Hua J., Tembe W., and Dougherty E. Performance of feature-selection methods in the classification of high-dimension data. Pattern Recognition 42 3 (2009) 409-424
    • (2009) Pattern Recognition , vol.42 , Issue.3 , pp. 409-424
    • Hua, J.1    Tembe, W.2    Dougherty, E.3
  • 4
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu L., and Liu H. Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research 5 (2004) 1205-1224
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 11
    • 38349186228 scopus 로고    scopus 로고
    • Kernel quadratic discriminant analysis for small sample size problem
    • Wang J., Plataniotis K., Lu J., and Venetsanopoulos A. Kernel quadratic discriminant analysis for small sample size problem. Pattern Recognition 41 5 (2008) 1528-1538
    • (2008) Pattern Recognition , vol.41 , Issue.5 , pp. 1528-1538
    • Wang, J.1    Plataniotis, K.2    Lu, J.3    Venetsanopoulos, A.4
  • 14
    • 38349093039 scopus 로고    scopus 로고
    • Constraint score: a new filter method for feature selection with pairwise constraints
    • Zhang D., Chen S., and Zhou Z. Constraint score: a new filter method for feature selection with pairwise constraints. Pattern Recognition 41 5 (2008) 1440-1451
    • (2008) Pattern Recognition , vol.41 , Issue.5 , pp. 1440-1451
    • Zhang, D.1    Chen, S.2    Zhou, Z.3
  • 18
    • 0038137315 scopus 로고    scopus 로고
    • Ensemble feature selection with simple Bayesian classification
    • Tsymbal A., Puuronen S., and Patterson D.W. Ensemble feature selection with simple Bayesian classification. Information Fusion 4 (2003) 87-100
    • (2003) Information Fusion , vol.4 , pp. 87-100
    • Tsymbal, A.1    Puuronen, S.2    Patterson, D.W.3
  • 21
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., and John G. Wrappers for feature subset selection. Artificial Intelligence 97 1-2 (1997) 273-324
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 22
    • 1942451938 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data: A fast correlation-based filter solution
    • Washington DC
    • L. Yu, H. Liu, Feature selection for high-dimensional data: a fast correlation-based filter solution, in: Proceedings of the 20th International Conferences on Machine Learning, Washington DC, 2003, pp. 601-608.
    • (2003) Proceedings of the 20th International Conferences on Machine Learning , pp. 601-608
    • Yu, L.1    Liu, H.2
  • 23
    • 62349118015 scopus 로고    scopus 로고
    • Feature selection with dynamic mutual information
    • Liu H., Sun J., Liu L., and Zhang H. Feature selection with dynamic mutual information. Pattern Recognition 42 7 (2009) 1330-1339
    • (2009) Pattern Recognition , vol.42 , Issue.7 , pp. 1330-1339
    • Liu, H.1    Sun, J.2    Liu, L.3    Zhang, H.4
  • 24
    • 62349103880 scopus 로고    scopus 로고
    • A hybrid probabilistic framework for content-based image retrieval with feature weighting
    • Ziou D., Hamri T., and Boutemedjet S. A hybrid probabilistic framework for content-based image retrieval with feature weighting. Pattern Recognition 42 7 (2009) 1511-1519
    • (2009) Pattern Recognition , vol.42 , Issue.7 , pp. 1511-1519
    • Ziou, D.1    Hamri, T.2    Boutemedjet, S.3
  • 25
    • 45649085108 scopus 로고    scopus 로고
    • Predicting protein structural class by SVM with class-wise optimized features and decision probabilities
    • Anand A., Pugalenthi G., and Suganthan P. Predicting protein structural class by SVM with class-wise optimized features and decision probabilities. Journal of Theoretical Biology 253 2 (2008) 375-380
    • (2008) Journal of Theoretical Biology , vol.253 , Issue.2 , pp. 375-380
    • Anand, A.1    Pugalenthi, G.2    Suganthan, P.3
  • 26
    • 67349250195 scopus 로고    scopus 로고
    • Feature selection based on loss-margin of nearest neighbor classification
    • Li Y., and Lu B. Feature selection based on loss-margin of nearest neighbor classification. Pattern Recognition 42 9 (2009) 1914-1921
    • (2009) Pattern Recognition , vol.42 , Issue.9 , pp. 1914-1921
    • Li, Y.1    Lu, B.2
  • 27
    • 67349133167 scopus 로고    scopus 로고
    • An improvement on floating search algorithms for feature subset selection
    • Nakariyakul S., and Casasent D. An improvement on floating search algorithms for feature subset selection. Pattern Recognition 42 9 (2009) 1932-1940
    • (2009) Pattern Recognition , vol.42 , Issue.9 , pp. 1932-1940
    • Nakariyakul, S.1    Casasent, D.2
  • 29
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H., Long F., and Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27 8 (2005) 1226-1238
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 31
    • 33646385144 scopus 로고    scopus 로고
    • Fuzzy SVM for content-based image retrieval-A pseudo-label support vector machine framework
    • Wu K. Fuzzy SVM for content-based image retrieval-A pseudo-label support vector machine framework. IEEE Computational Intelligence Magazine 1 (2006) 10-16
    • (2006) IEEE Computational Intelligence Magazine , vol.1 , pp. 10-16
    • Wu, K.1
  • 32
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning, with application to clustering with side-information
    • MIT Press, Cambridge, MA
    • E. Xing, A.Y. Ng, M. Jordan, S. Russell, Distance metric learning, with application to clustering with side-information, in: Advances in Neural Information Processing Systems, vol. 15, MIT Press, Cambridge, MA, 2003, pp. 505-512.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 505-512
    • Xing, E.1    Ng, A.Y.2    Jordan, M.3    Russell, S.4
  • 33
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • 1530, Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI, 2006
    • X. Zhu, Semi-supervised learning literature survey, Technique Report 1530, Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI, 2006. 〈http://www.cs.wisc.edu/∼jerryzhu/pub/ssl_survey.pdf〉.
    • Technique Report
    • Zhu, X.1
  • 39
    • 70349236421 scopus 로고    scopus 로고
    • Constraint selection by committee: An ensemble approach to identifying informative constraints for semi-supervised clustering
    • Warsaw, Poland
    • D. Greene, P. Cunningham, Constraint selection by committee: an ensemble approach to identifying informative constraints for semi-supervised clustering, in: Proceedings of the 18th European Conference on Machine Learning, Warsaw, Poland, 2007, pp. 17-21.
    • (2007) Proceedings of the 18th European Conference on Machine Learning , pp. 17-21
    • Greene, D.1    Cunningham, P.2
  • 41
    • 62349101529 scopus 로고    scopus 로고
    • Ensemble component selection for improving ICA based microarray data prediction models
    • Liu K. Ensemble component selection for improving ICA based microarray data prediction models. Pattern Recognition 42 7 (2009) 1274-1283
    • (2009) Pattern Recognition , vol.42 , Issue.7 , pp. 1274-1283
    • Liu, K.1
  • 42
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 2 (1996) 123-140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 45
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles-a knowledge reuse framework for combining multiple partitions
    • Strehl A., and Ghosh J. Cluster ensembles-a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3 (2002) 583-618
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-618
    • Strehl, A.1    Ghosh, J.2
  • 47
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Science, University of California, Irvine
    • C. Blake, E. Keogh, C. Merz, UCI repository of machine learning databases, 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉, Department of Information and Computer Science, University of California, Irvine, 1998.
    • (1998) UCI repository of machine learning databases
    • Blake, C.1    Keogh, E.2    Merz, C.3
  • 48
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U., Barkai N., Notterman D., Gish K., Ybarra S., Mack D., and Levine A. Broad patterns of gene expression revealed by clustering of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences 96 12 (1999) 6745-6750
    • (1999) Proceedings of the National Academy of Sciences , vol.96 , Issue.12 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.