메뉴 건너뛰기




Volumn 2842, Issue , 2003, Pages 159-174

Kernel trick embedded Gaussian mixture model

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATION THEORY; GAUSSIAN DISTRIBUTION; LEARNING SYSTEMS; ALGORITHMS; DATABASE SYSTEMS; MATHEMATICAL MODELS; MONTE CARLO METHODS; PARAMETER ESTIMATION;

EID: 7444226952     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-39624-6_14     Document Type: Conference Paper
Times cited : (28)

References (22)
  • 8
    • 0036582564 scopus 로고    scopus 로고
    • Bayesian framework for least squares support vector machine classifiers, gaussian processs and kernel fisher discriminant analysis
    • Gestel, T. V., Suykens, J. A. K., Lanckriet, G., Lambrechts, A., Moor, B. De and Vanderwalle J.: Bayesian framework for least squares support vector machine classifiers, gaussian processs and kernel fisher discriminant analysis. Neural Computation, 15(5) (2002) 1115–1148
    • (2002) Neural Computation , vol.15 , Issue.5 , pp. 1115-1148
    • Gestel, T.V.1    Suykens, J.2    Lanckriet, G.3    Lambrechts, A.4    De Moor, B.5    Vanderwalle, J.6
  • 10
    • 0034271876 scopus 로고    scopus 로고
    • The Evidence Framework Applied to Support Vector Machines
    • Kwok, J. T.: The Evidence Framework Applied to Support Vector Machines, IEEE Trans. on NN, Vol. 11 (2000) 1162–1173.
    • (2000) IEEE Trans. On NN , vol.11 , pp. 1162-1173
    • Kwok, J.T.1
  • 12
    • 0035860537 scopus 로고    scopus 로고
    • Machine Learning for Science: State of the Art and Future Pros-pects
    • Mjolsness, E. and Decoste, D.: Machine Learning for Science: State of the Art and Future Pros-pects, Science. Vol. 293 (2001)
    • (2001) Science , vol.293
    • Mjolsness, E.1    Decoste, D.2
  • 13
    • 0031061864 scopus 로고    scopus 로고
    • Parametric and Non-Parametric Unsupervised Cluster Analysis
    • Roberts, S. J.: Parametric and Non-Parametric Unsupervised Cluster Analysis, Pattern Recogni-tion, Vol. 30. No 2, (1997) 261–272
    • (1997) Pattern Recogni-Tion , vol.30 , Issue.2 , pp. 261-272
    • Roberts, S.J.1
  • 14
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigen-value Problem
    • Schölkopf, B., Smola, A. J. and Müller, K. R.: Nonlinear Component Analysis as a Kernel Eigen-value Problem, Neural Computation, 10(5), (1998) 1299–1319
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.R.3
  • 19
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nyström Method to Speed Up Kernel Machines
    • In T. K. Leen, T. G. Diettrich, and V. Tresp, editors, MIT Press, Cambridge MA
    • Williams, C. and Seeger, M.: Using the Nyström Method to Speed Up Kernel Machines. In T. K. Leen, T. G. Diettrich, and V. Tresp, editors, Advances in Neural Information Processing Systems (NIPS) 13. MIT Press, Cambridge MA (2001)
    • (2001) Advances in Neural Information Processing Systems (NIPS) , vol.13
    • Williams, C.1    Seeger, M.2
  • 20
    • 84942814250 scopus 로고    scopus 로고
    • On the Eigenspectrum of the Gram Matrix and Its Relationship to the Operator Eigenspectrum
    • N. CesaBianchi et al. (Eds.), Springer-Verlag, Berlin Heidelberg
    • Taylor, J. S., Williams, C., Cristianini, N. and Kandola J.: On the Eigenspectrum of the Gram Matrix and Its Relationship to the Operator Eigenspectrum, N. CesaBianchi et al. (Eds.): ALT 2002, LNAI 2533, Springer-Verlag, Berlin Heidelberg (2002) 23–40
    • (2002) ALT 2002, LNAI , vol.2533 , pp. 23-40
    • Taylor, J.S.1    Williams, C.2    Cristianini, N.3    Kandola, J.4
  • 22
    • 0031188771 scopus 로고    scopus 로고
    • Probabilistic visual learning for object representation
    • Moghaddam, B. and Pentland, A.: Probabilistic visual learning for object representation, IEEE Trans. on PAMI, Vol. 19, No. 7 (1997) 696–710
    • (1997) IEEE Trans. On PAMI , vol.19 , Issue.7 , pp. 696-710
    • Moghaddam, B.1    Pentland, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.