메뉴 건너뛰기




Volumn 37, Issue 2, 2010, Pages 907-920

Effect of finite sample size on feature selection and classification: A simulation study

Author keywords

Feature selection; Linear discriminant analysis; Sample size effect; Support vector machines

Indexed keywords

COMPUTER AIDED DIAGNOSIS; COVARIANCE MATRIX; DISCRIMINANT ANALYSIS; SAMPLING; SUPPORT VECTOR MACHINES;

EID: 75749099885     PISSN: 00942405     EISSN: None     Source Type: Journal    
DOI: 10.1118/1.3284974     Document Type: Article
Times cited : (65)

References (39)
  • 1
    • 0033461791 scopus 로고    scopus 로고
    • Classifier design for computer-aided diagnosis: Effects of finite sample size on the mean performance of classical and neural network classifiers
    • DOI 10.1118/1.598805
    • H. P. Chan, B. Sahiner, R. F. Wagner, and N. Petrick, " Classifier design for computer-aided diagnosis: Effects of finite sample size on the mean performance of classical and neural network classifiers.," Med. Phys. MPHYA6 0094-2405 26, 2654-2668 (1999). 10.1118/1.598805 (Pubitemid 30007711)
    • (1999) Medical Physics , vol.26 , Issue.12 , pp. 2654-2668
    • Chan, H.-P.1    Sahiner, B.2    Wagner, R.F.3    Petrick, N.4
  • 2
    • 0033863591 scopus 로고    scopus 로고
    • Feature selection and classifier performance in computer-aided diagnosis: The effect of finite sample size
    • DOI 10.1118/1.599017
    • B. Sahiner, H. P. Chan, N. Petrick, R. F. Wagner, and L. M. Hadjiiski, " Feature selection and classifier performance in computer-aided diagnosis: The effect of finite sample size.," Med. Phys. MPHYA6 0094-2405 27, 1509-1522 (2000). 10.1118/1.599017 (Pubitemid 30624246)
    • (2000) Medical Physics , vol.27 , Issue.7 , pp. 1509-1522
    • Sahiner, B.1    Chan, H.-P.2    Petrick, N.3    Wagner, R.F.4    Hadjiiski, L.5
  • 3
    • 41449091519 scopus 로고    scopus 로고
    • Classifier performance prediction for computer-aided diagnosis using a limited data set
    • MPHYA6 0094-2405,. 10.1118/1.2868757
    • B. Sahiner, H. P. Chan, and L. Hadjiiski, " Classifier performance prediction for computer-aided diagnosis using a limited data set.," Med. Phys. MPHYA6 0094-2405 35, 1559-1570 (2008). 10.1118/1.2868757
    • (2008) Med. Phys. , vol.35 , pp. 1559-1570
    • Sahiner, B.1    Chan, H.P.2    Hadjiiski, L.3
  • 4
    • 40649089855 scopus 로고    scopus 로고
    • Classifier performance estimation under the constraint of a finite sample size: Resampling schemes applied to neural network classifiers
    • NNETEB 0893-6080,. 10.1016/j.neunet.2007.12.012
    • B. Sahiner, H. P. Chan, and L. M. Hadjiiski, " Classifier performance estimation under the constraint of a finite sample size: Resampling schemes applied to neural network classifiers.," Neural Networks NNETEB 0893-6080 21, 476-483 (2008). 10.1016/j.neunet.2007.12.012
    • (2008) Neural Networks , vol.21 , pp. 476-483
    • Sahiner, B.1    Chan, H.P.2    Hadjiiski, L.M.3
  • 5
    • 31844441848 scopus 로고    scopus 로고
    • Analysis and minimization of overtraining effect in rule-based classifiers for computer-aided diagnosis
    • DOI 10.1118/1.1999126
    • Q. Li and K. Doi, " Analysis and minimization of overtraining effect in rule-based classifiers for computer-aided diagnosis.," Med. Phys. MPHYA6 0094-2405 33, 320-328 (2006). 10.1118/1.1999126 (Pubitemid 43183973)
    • (2006) Medical Physics , vol.33 , Issue.2 , pp. 320-328
    • Li, Q.1    Doi, K.2
  • 6
    • 33847686259 scopus 로고    scopus 로고
    • Comparison of typical evaluation methods for computer-aided diagnostic schemes: Monte Carlo simulation study
    • DOI 10.1118/1.2437130
    • Q. Li and K. Doi, " Comparison of typical evaluation methods for computer-aided diagnostic schemes: Monte Carlo simulation study.," Med. Phys. MPHYA6 0094-2405 34, 871-876 (2007). 10.1118/1.2437130 (Pubitemid 46355650)
    • (2007) Medical Physics , vol.34 , Issue.3 , pp. 871-876
    • Li, Q.1    Doi, K.2
  • 7
    • 0347252304 scopus 로고    scopus 로고
    • A general model for finite-sample effects in training and testing of competing classifiers
    • ITPIDJ 0162-8828,. 10.1109/TPAMI.2003.1251149
    • S. V. Beiden, M. A. Maloof, and R. F. Wagner, " A general model for finite-sample effects in training and testing of competing classifiers.," IEEE Trans. Pattern Anal. Mach. Intell. ITPIDJ 0162-8828 25, 1561-1569 (2003). 10.1109/TPAMI.2003.1251149
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , pp. 1561-1569
    • Beiden, S.V.1    Maloof, M.A.2    Wagner, R.F.3
  • 8
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample size performance
    • ITPIDJ 0162-8828,. 10.1109/34.574797
    • A. Jain and D. Zongker, " Feature selection: Evaluation, application, and small sample size performance.," IEEE Trans. Pattern Anal. Mach. Intell. ITPIDJ 0162-8828 19, 153-158 (1997). 10.1109/34.574797
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 9
    • 0028547556 scopus 로고
    • Floating search methods in feature selection
    • PRLEDG 0167-8655,. 10.1016/0167-8655(94)90127-9
    • P. Pudil, J. Novovicová, and J. Kittler, " Floating search methods in feature selection.," Pattern Recogn. Lett. PRLEDG 0167-8655 15, 1119-1125 (1994). 10.1016/0167-8655(94)90127-9
    • (1994) Pattern Recogn. Lett. , vol.15 , pp. 1119-1125
    • Pudil, P.1    Novovicová, J.2    Kittler, J.3
  • 10
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • DOI 10.1016/S0031-3203(99)00041-2
    • M. Kudo and J. Sklansky, " Comparison of algorithms that select features for pattern classifiers.," Pattern Recogn. PTNRA8 0031-3203 33, 25-41 (2000). 10.1016/S0031-3203(99)00041-2 (Pubitemid 32081876)
    • (2000) Pattern Recognition , vol.33 , Issue.1 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 11
    • 33750052587 scopus 로고    scopus 로고
    • What should be expected from feature selection in small-sample settings
    • DOI 10.1093/bioinformatics/btl407
    • C. Sima and E. R. Dougherty, " What should be expected from feature selection in small-sample settings.," Bioinformatics BOINFP 1367-4803 22, 2430-2436 (2006). 10.1093/bioinformatics/btl407 (Pubitemid 44574149)
    • (2006) Bioinformatics , vol.22 , Issue.19 , pp. 2430-2436
    • Sima, C.1    Dougherty, E.R.2
  • 12
    • 54549099006 scopus 로고    scopus 로고
    • Performance of feature-selection methods in the classification of high-dimension data
    • PTNRA8 0031-3203,. 10.1016/j.patcog.2008.08.001
    • J. P. Hua, W. D. Tembe, and E. R. Dougherty, " Performance of feature-selection methods in the classification of high-dimension data.," Pattern Recogn. PTNRA8 0031-3203 42, 409-424 (2009). 10.1016/j.patcog.2008.08. 001
    • (2009) Pattern Recogn. , vol.42 , pp. 409-424
    • Hua, J.P.1    Tembe, W.D.2    Dougherty, E.R.3
  • 13
    • 10444280144 scopus 로고    scopus 로고
    • An extensive comparison of recent classification tools applied to microarray data
    • CSDADW 0167-9473,. 10.1016/j.csda.2004.03.017
    • J. W. Lee, J. B. Lee, M. Park, and S. H. Song, " An extensive comparison of recent classification tools applied to microarray data.," Comput. Stat. Data Anal. CSDADW 0167-9473 48, 869-885 (2005). 10.1016/j.csda.2004.03.017
    • (2005) Comput. Stat. Data Anal. , vol.48 , pp. 869-885
    • Lee, J.W.1    Lee, J.B.2    Park, M.3    Song, S.H.4
  • 14
    • 32044475348 scopus 로고    scopus 로고
    • Construction of a nasopharyngeal carcinoma 2D/MS repository with Open Source XML Database - Xindice
    • DOI 10.1186/1471-2105-7-13
    • X. G. Zhang, X. Lu, Q. Shi, X. Q. Xu, H. C. E. Leung, L. N. Harris, J. D. Iglehart, A. Miron, J. S. Liu, and W. H. Wong, " Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data.," BMC Bioinf. BBMIC4 1471-2105 7, 13 (2006). 10.1186/1471-2105-7-13 (Pubitemid 43193492)
    • (2006) BMC Bioinformatics , vol.7 , pp. 13
    • Li, F.1    Li, M.2    Xiao, Z.3    Zhang, P.4    Li, J.5    Chen, Z.6
  • 15
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • ZZZZZZ 1532-4435.
    • J. G. Dy and C. E. Brodley, " Feature selection for unsupervised learning.," J. Mach. Learn. Res. ZZZZZZ 1532-4435 5, 845-889 (2004).
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 845-889
    • Dy, J.G.1    Brodley, C.E.2
  • 16
    • 0030195103 scopus 로고    scopus 로고
    • Feature selection for pattern classification with Gaussian mixture models: A new objective criterion
    • DOI 10.1016/0167-8655(96)00047-5, PII S0167865596000475
    • S. Krishnan, K. Samudravijaya, and P. V. S. Rao, " Feature selection for pattern classification with Gaussian mixture models: A new objective criterion.," Pattern Recogn. Lett. PRLEDG 0167-8655 17, 803-809 (1996). 10.1016/0167-8655(96)00047-5 (Pubitemid 126384184)
    • (1996) Pattern Recognition Letters , vol.17 , Issue.8 , pp. 803-809
    • Krishnan, S.1    Samudravijaya, K.2    Rao, P.V.S.3
  • 17
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • AINTBB 0004-3702,. 10.1016/S0004-3702(97)00043-X
    • R. Kohavi and G. H. John, " Wrappers for feature subset selection.," Artif. Intell. AINTBB 0004-3702 97, 273-324 (1997). 10.1016/S0004-3702(97)00043-X
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 18
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • ZZZZZZ 1532-4435.
    • L. Yu and H. Liu, " Efficient feature selection via analysis of relevance and redundancy.," J. Mach. Learn. Res. ZZZZZZ 1532-4435 5, 1205-1224 (2004).
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 22
    • 0032085939 scopus 로고    scopus 로고
    • Objective assessment of image quality. III. ROC metrics, ideal observers, and likelihood-generating functions
    • 10.1364/JOSAA.15.001520 1084-7529
    • H. H. Barrett, C. K. Abbey, and E. Clarkson, " Objective assessment of image quality. III. ROC metrics, ideal observers, and likelihood-generating functions.," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 15, 1520-1535 (1998). 10.1364/JOSAA.15.001520 1084-7529
    • (1998) J. Opt. Soc. Am. A Opt. Image Sci. Vis. , vol.15 , pp. 1520-1535
    • Barrett, H.H.1    Abbey, C.K.2    Clarkson, E.3
  • 23
    • 33745644734 scopus 로고    scopus 로고
    • Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours
    • DOI 10.1118/1.2207129
    • T. W. Way, L. M. Hadjiiski, B. Sahiner, H. -P. Chan, P. N. Cascade, E. A. Kazerooni, N. Bogot, and C. Zhou, " Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours.," Med. Phys. MPHYA6 0094-2405 33, 2323-2337 (2006). 10.1118/1.2207129 (Pubitemid 43967219)
    • (2006) Medical Physics , vol.33 , Issue.7 , pp. 2323-2337
    • Way, T.W.1    Hadjiiski, L.M.2    Sahiner, B.3    Chan, H.-P.4    Cascade, P.N.5    Kazerooni, E.A.6    Bogot, N.7    Zhou, C.8
  • 24
    • 0001416258 scopus 로고
    • Texture classification using gray level run lengths
    • CGIPBG 0146-664X,. 10.1016/S0146-664X(75)80008-6
    • M. M. Galloway, " Texture classification using gray level run lengths.," Comput. Graph. Image Process. CGIPBG 0146-664X 4, 172-179 (1975). 10.1016/S0146-664X(75)80008-6
    • (1975) Comput. Graph. Image Process. , vol.4 , pp. 172-179
    • Galloway, M.M.1
  • 25
    • 0026276969 scopus 로고
    • Image characterizations based on joint gray-level run-length distributions
    • PRLEDG 0167-8655,. 10.1016/0167-8655(91)80014-2
    • B. R. Dasarathy and E. B. Holder, " Image characterizations based on joint gray-level run-length distributions.," Pattern Recogn. Lett. PRLEDG 0167-8655 12, 497-502 (1991). 10.1016/0167-8655(91)80014-2
    • (1991) Pattern Recogn. Lett. , vol.12 , pp. 497-502
    • Dasarathy, B.R.1    Holder, E.B.2
  • 26
    • 84914813506 scopus 로고
    • On the effectiveness of receptors in recognition systems
    • IETTAW 0018-9448,. 10.1109/TIT.1963.1057810
    • T. Marill and D. Green, " On the effectiveness of receptors in recognition systems.," IEEE Trans. Inf. Theory IETTAW 0018-9448 9, 11-17 (1963). 10.1109/TIT.1963.1057810
    • (1963) IEEE Trans. Inf. Theory , vol.9 , pp. 11-17
    • Marill, T.1    Green, D.2
  • 27
    • 0015125457 scopus 로고
    • A direct method of nonparametric measurement selection
    • ITCOB4 0018-9340,. 10.1109/T-C.1971.223410
    • A. W. Whitney, " A direct method of nonparametric measurement selection.," IEEE Trans. Comput. ITCOB4 0018-9340 C-20, 1100-1103 (1971). 10.1109/T-C.1971.223410
    • (1971) IEEE Trans. Comput. , vol.C-20 , pp. 1100-1103
    • Whitney, A.W.1
  • 31
    • 0002526012 scopus 로고
    • Third International Conference on Pattern Recognition, Coronado, CA
    • S. D. Stearns, " On selecting features for pattern classifiers.," Third International Conference on Pattern Recognition, Coronado, CA, 1976, pp. 71-75.
    • (1976) On Selecting Features for Pattern Classifiers , pp. 71-75
    • Stearns, S.D.1
  • 34
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • DOI 10.1023/A:1009715923555
    • C. J. C. Burges, " A tutorial on support vector machines for pattern recognition.," Data Min. Knowl. Discov. DMKDFD 1384-5810 2, 121-167 (1998). 10.1023/A:1009715923555 (Pubitemid 128126769)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-168
    • Burges, C.J.C.1
  • 35
    • 36649001129 scopus 로고    scopus 로고
    • Computer-aided detection of interstitial abnormalities in chest radiographs using a reference standard based on computed tomography
    • DOI 10.1118/1.2795672
    • Y. Arzhaeva, M. Prokop, D. M. J. Tax, P. A. De Jong, C. M. Schaefer-Prokop, and B. van Ginneken, " Computer-aided detection of interstitial abnormalities in chest radiographs using a reference standard based on computed tomography.," Med. Phys. MPHYA6 0094-2405 34, 4798-4809 (2007). 10.1118/1.2795672 (Pubitemid 350197719)
    • (2007) Medical Physics , vol.34 , Issue.12 , pp. 4798-4809
    • Arzhaeva, Y.1    Prokop, M.2    Tax, D.M.J.3    De Jong, P.A.4    Schaefer-Prokop, C.M.5    Ginneken, B.V.6
  • 36
    • 33845567879 scopus 로고    scopus 로고
    • A fully automated method for lung nodule detection from postero-anterior chest radiographs
    • DOI 10.1109/TMI.2006.884198
    • P. Campadelli, E. Casiraghi, and D. Artioli, " A fully automated method for lung nodule detection from postero-anterior chest radiographs.," IEEE Trans. Med. Imaging ITMID4 0278-0062 25, 1588-1603 (2006). 10.1109/TMI.2006.884198 (Pubitemid 44936708)
    • (2006) IEEE Transactions on Medical Imaging , vol.25 , Issue.12 , pp. 1588-1603
    • Campadelli, P.1    Casiraghi, E.2    Artioli, D.3
  • 37
    • 17044407594 scopus 로고    scopus 로고
    • Support vector machines committee classification method for computer-aided polyp detection in CT colonography
    • ZZZZZZ 1076-6332,. 10.1016/j.acra.2004.04.024
    • A. K. Jerebko, J. D. Malley, M. Franaszek, and R. M. Summers, " Support vector machines committee classification method for computer-aided polyp detection in CT colonography.," Acad. Radiol. ZZZZZZ 1076-6332 12, 479-486 (2005). 10.1016/j.acra.2004.04.024
    • (2005) Acad. Radiol. , vol.12 , pp. 479-486
    • Jerebko, A.K.1    Malley, J.D.2    Franaszek, M.3    Summers, R.M.4
  • 38
    • 78149303576 scopus 로고    scopus 로고
    • Proceedings of the IEEE International Conference on Data Mining
    • S. Ruping, " Incremental learning with support vector machines.," Proceedings of the IEEE International Conference on Data Mining, 2001, pp. 641-642.
    • (2001) Incremental Learning with Support Vector Machines , pp. 641-642
    • Ruping, S.1
  • 39
    • 0032594951 scopus 로고    scopus 로고
    • Support vector machines for histogram-based image classification
    • ITNNEP 1045-9227,. 10.1109/72.788646
    • O. Chapelle, P. Haffner, and V. N. Vapnik, " Support vector machines for histogram-based image classification.," IEEE Trans. Neural Netw. ITNNEP 1045-9227 10, 1055-1064 (1999). 10.1109/72.788646
    • (1999) IEEE Trans. Neural Netw. , vol.10 , pp. 1055-1064
    • Chapelle, O.1    Haffner, P.2    Vapnik, V.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.