-
1
-
-
41149174128
-
-
For recent examples, see: a) S. K. Jackson, A. Karadeolian. A. B. Driega, M. A. Kerr, J. Am. Chem. Soc. 2008, 130, 4196;
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 4196
-
-
Jackson, S.K.1
Karadeolian, A.2
Driega, A.B.3
Kerr, M.A.4
-
2
-
-
34548792285
-
-
b) T. Ok, A. Jeon. J. Lee. J. H. Lim, C. S. Hong. H.-S. Lee. J. Org. Chem. 2007, 72, 7390;
-
(2007)
J. Org. Chem.
, vol.72
, pp. 7390
-
-
Ok, T.1
Jeon, A.2
Lee, J.3
Lim, J.H.4
Hong, C.S.5
Lee, H.-S.6
-
3
-
-
34548157997
-
-
c) M. Tanaka, M. Ubukata, T. Matsuo. K, Yasue. K. Matsumoto. Y. Kajimoto, T. Ogo, T. Inaba. Org. Lett. 2007, 9, 3331;
-
(2007)
Org. Lett.
, vol.9
, pp. 3331
-
-
Tanaka, M.1
Ubukata, M.2
Matsuo, T.3
Yasue, K.4
Matsumoto, K.5
Kajimoto, Y.6
Ogo, T.7
Inaba, T.8
-
4
-
-
34250684988
-
-
d) T. Tada, Y. Ishida, K. Saigo, Org. Lett. 2007, 9, 2083:
-
(2007)
Org. Lett.
, vol.9
, pp. 2083
-
-
Tada, T.1
Ishida, Y.2
Saigo, K.3
-
6
-
-
51349104143
-
-
f) H. Fujii, Y. Osa, M. Ishihara. S. Hanamura, T. Nemoto. M. Nakajima, K. Hasebe, H. Mochizuki, H. Nagase, Bioorg. Med. Chem. Lett. 2008, 18, 4978;
-
(2008)
Bioorg. Med. Chem. Lett.
, vol.18
, pp. 4978
-
-
Fujii, H.1
Osa, Y.2
Ishihara, M.3
Hanamura, S.4
Nemoto, T.5
Nakajima, M.6
Hasebe, K.7
Mochizuki, H.8
Nagase, H.9
-
12
-
-
34547444477
-
-
e) M. Rubin, M. Runina, V. Gevorgyan, Chem. Rev. 2007, 107, 3117;
-
(2007)
Chem. Rev.
, vol.107
, pp. 3117
-
-
Rubin, M.1
Runina, M.2
Gevorgyan, V.3
-
19
-
-
0035943267
-
-
d) A. D. Allen, M. F. Fenwick, H. H. Riyad, T. T. Tidwell, J. Org. Chem. 2001, 66, 5759;
-
(2001)
J. Org. Chem.
, vol.66
, pp. 5759
-
-
Allen, A.D.1
Fenwick, M.F.2
Riyad, H.H.3
Tidwell, T.T.4
-
22
-
-
0037205920
-
-
g) B. S. J. Blagg. M. B. Jarstfer, D. H. Rogers, C. D. Poulter, J. Am. Chem. Soc. 2002, 124, 8846:
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 8846
-
-
Blagg, B.S.J.1
Jarstfer, M.B.2
Rogers, D.H.3
Poulter, C.D.4
-
26
-
-
0032508028
-
-
c) K. Sakaguchi, M. Fujita, Y. Ohfune, Tetrahedron Lett. 1998, 39, 4313:
-
(1998)
Tetrahedron Lett.
, vol.39
, pp. 4313
-
-
Sakaguchi, K.1
Fujita, M.2
Ohfune, Y.3
-
28
-
-
23844492156
-
-
e) M. Honda, Y. Yamamoto, H. Tsuchida, M. Segi, T. Nakajima, Tetrahedron Lett. 2005, 46, 6465;
-
(2005)
Tetrahedron Lett.
, vol.46
, pp. 6465
-
-
Honda, M.1
Yamamoto, Y.2
Tsuchida, H.3
Segi, M.4
Nakajima, T.5
-
29
-
-
33745614858
-
-
f) M. Honda. T. Mita. T. Nishizawa, T. Sano, M. Segi, T. Nakajima, Tetrahedron Lett. 2006, 47, 5751:
-
(2006)
Tetrahedron Lett.
, vol.47
, pp. 5751
-
-
Honda, M.1
Mita, T.2
Nishizawa, T.3
Sano, T.4
Segi, M.5
Nakajima, T.6
-
31
-
-
33751573605
-
-
h) C. Singh, S. Pandey, G. Saxena, N. Srivastava. M. Sharma, J. Org. Chem. 2006, 71, 9057.
-
(2006)
J. Org. Chem.
, vol.71
, pp. 9057
-
-
Singh, C.1
Pandey, S.2
Saxena, G.3
Srivastava, N.4
Sharma, M.5
-
35
-
-
45749154492
-
-
a) T. Sato, T. Kikuchi, N. Sootome, E. Murayama, Tetrahedron Lett. 1985, 26, 2205;
-
(1985)
Tetrahedron Lett.
, vol.26
, pp. 2205
-
-
Sato, T.1
Kikuchi, T.2
Sootome, N.3
Murayama, E.4
-
36
-
-
0026090508
-
-
b) T. Sato, T. Kikuchi. H. Tsujita, A. Kaetsu. N. Sootome. K. Nishida, K. Tachibana, E. Murayama, Tetrahedron 1991, 47, 3281;
-
(1991)
Tetrahedron
, vol.47
, pp. 3281
-
-
Sato, T.1
Kikuchi, T.2
Tsujita, H.3
Kaetsu, A.4
Sootome, N.5
Nishida, K.6
Tachibana, K.7
Murayama, E.8
-
40
-
-
75649097914
-
-
Preparation of bis(iodozincio)methane was accompanied by for mation of zinc(II) iodide. The Lewis acidity of zinc(II) iodide seems to be sufficient for β,γ-unsaluraled ketone formation. See: S. Matsubara, H. Yoshino, Y. Yamamoto, K. Oshima, H. Matsuoka, K. Matsumoto, K. Ishikawa. E. Matsubara, J. Organomet. Chem. 2005, 690, 4859.
-
(2005)
J. Organomet. Chem.
, vol.690
, pp. 4859
-
-
Matsubara, S.1
Yoshino, H.2
Yamamoto, Y.3
Oshima, K.4
Matsuoka, H.5
Matsumoto, K.6
Ishikawa, K.7
Matsubara, E.8
-
42
-
-
18744363278
-
-
Treatment of an α,β-unsaturated ketone with an aldehyde in the presence of chromium(II) gives 2-(1-hydroxyalkyl)-1-alkylcyclopropanol. Meanwhile, the same reaction with the addition of chlorotrimethylsilane affords cross-pinacol coupling product. See: a) K. Takai, R. Morita, C. Toratsu, Angew. Chem. 2001, 113, 1150;
-
(2001)
Angew. Chem.
, vol.113
, pp. 1150
-
-
Takai, K.1
Morita, R.2
Toratsu, C.3
-
44
-
-
0037215383
-
-
b) K. Takai, R. Morita, H. Matsushita, C. Toratsu. Chirality 2003, 15, 17.
-
(2003)
Chirality
, vol.15
, pp. 17
-
-
Takai, K.1
Morita, R.2
Matsushita, H.3
Toratsu, C.4
-
45
-
-
33847798461
-
-
Still and Macdonald have reported that α-alkoxyallyl carbanions undergo preferential protonation and alkylation at the unsubstituted terminus and react with carbonyl compounds at lhe alkoxy-substituted terminus. See. W. C. Still. T. L. Macdonald. J. Org. Chem. 1976, 41, 3620.
-
(1976)
J. Org. Chem.
, vol.41
, pp. 3620
-
-
Still, W.C.1
Macdonald, T.L.2
-
46
-
-
0001990218
-
-
M. Isobe, S. Kondo, N. Nagasawa, T. Goto, Chem. Lett. 1977, 679.
-
(1977)
Chem. Lett.
, pp. 679
-
-
Isobe, M.1
Kondo, S.2
Nagasawa, N.3
Goto, T.4
-
47
-
-
33751385156
-
-
For representative examples, see: a) T. Harada, T. Katsuhira, D. Hara. Y. Kotani, K. Maejima, R. Kaji, A. Oku. J. Org. Chem. 1993, 58, 4897:
-
(1993)
J. Org. Chem.
, vol.58
, pp. 4897
-
-
Harada, T.1
Katsuhira, T.2
Hara, D.3
Kotani, Y.4
Maejima, K.5
Kaji, R.6
Oku, A.7
-
51
-
-
0032490932
-
-
e) T. Harada, T. Kaneko. T. Fujiwara, A. Oku. Tetrahedron 1998, 54, 9317;
-
(1998)
Tetrahedron
, vol.54
, pp. 9317
-
-
Harada, T.1
Kaneko, T.2
Fujiwara, T.3
Oku, A.4
-
52
-
-
0000776479
-
-
f) Y. Kondo. T. Komine, M. Fujinami, M. Uchiyama. T. Sakamoto. J. Comb. Chem. 1999, 1, 123;
-
(1999)
J. Comb. Chem.
, vol.1
, pp. 123
-
-
Kondo, Y.1
Komine, T.2
Fujinami, M.3
Uchiyama, M.4
Sakamoto, T.5
-
53
-
-
33745685968
-
-
g) M. Uchiyama, T. Furuyama, M. Kobayashi, Y. Matsumoto. K. Tanaka. J. Am. Chem. Soc. 2006, 128, 8404.
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 8404
-
-
Uchiyama, M.1
Furuyama, T.2
Kobayashi, M.3
Matsumoto, Y.4
Tanaka, K.5
-
54
-
-
75649115832
-
-
The react IR measurement was conducted every 30 s. Figure 1 shows the absorption intensity of 3b and 5b plotted every 30 min to simplify the figure. See the Supporting Information for more details.
-
The react IR measurement was conducted every 30 s. Figure 1 shows the absorption intensity of 3b and 5b plotted every 30 min to simplify the figure. See the Supporting Information for more details.
-
-
-
-
55
-
-
75649085006
-
-
Although 31 was used as a single diastereomer form, we could not determine the relative stereochemistry of 3i.
-
Although 31 was used as a single diastereomer form, we could not determine the relative stereochemistry of 3i.
-
-
-
-
56
-
-
1242290733
-
-
Compared with the result of specific rotation in the literature, it was found that 5b has (S)-configuration. See: M. E. Vargas-Diaz, L. Chacon-Garcia, P. Valezquez, J. Tamariz, P. Joseph-Nathan, L. G. Zepeda, Tetrahedron: Asymmetry 2003, 14, 3225.
-
(2003)
Tetrahedron: Asymmetry
, vol.14
, pp. 3225
-
-
Vargas-Diaz, M.E.1
Chacon-Garcia, L.2
Valezquez, P.3
Tamariz, J.4
Joseph-Nathan, P.5
Zepeda, L.G.6
-
62
-
-
0027142470
-
-
f) K. Tomooka, T. Igarashi, T. Nakai, Tetrahedron Lett. 1993, 34, 8139:
-
(1993)
Tetrahedron Lett.
, vol.34
, pp. 8139
-
-
Tomooka, K.1
Igarashi, T.2
Nakai, T.3
-
64
-
-
75649151291
-
-
Although we attempted to trap D and E with allyl bromide and methyl iodide, the corresponding β-allylated ketone or β-methylated ketone was not obtained.
-
Although we attempted to trap D and E with allyl bromide and methyl iodide, the corresponding β-allylated ketone or β-methylated ketone was not obtained.
-
-
-
-
65
-
-
0033553109
-
-
2). The reaction directly affords o-zincated aromatic compounds. This reactivity is in contrast to the low basicity found for conventional zinc reagents. Because the ligand on the zinc atom of the zincate has stronger basicity than that on conventional zinc reagents, we are expecting that a ligand of zincate complex, such as an alkoxy group, has an ability as electron donor. See: Y. Kondo. M. Shilai, M. Uchiyama, T. Sakamoto. J. Am. Chem. Soc. 1999, 121, 3539.
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 3539
-
-
Kondo, Y.1
Shilai, M.2
Uchiyama, M.3
Sakamoto, T.4
|