메뉴 건너뛰기




Volumn 87, Issue 1-2, 2010, Pages 53-74

A study on smoothing for particle-filtered 3D human body tracking

Author keywords

Articulated human body tracking; Particle filtering; Smoothing

Indexed keywords

3D HUMAN BODY; APPROXIMATE INFERENCE; ARTICULATED HUMAN BODY TRACKING; BODY TRACKING; DATA SETS; GIBBS SAMPLING; HIGH-DIMENSIONAL; HUMAN BODY TRACKING; INFERENCE TECHNIQUES; PARTICLE FILTERING; SMOOTHING ALGORITHMS; SMOOTHING TECHNIQUES; VARIATIONAL APPROXIMATION;

EID: 75149144543     PISSN: 09205691     EISSN: 15731405     Source Type: Journal    
DOI: 10.1007/s11263-009-0205-5     Document Type: Article
Times cited : (30)

References (48)
  • 1
    • 0037262814 scopus 로고    scopus 로고
    • An introduction to MCMC for machine learning
    • 1033.68081 10.1023/A:1020281327116
    • C. Andrieu N. De Freitas A. Doucet M. I. Jordan 2003 An introduction to MCMC for machine learning Machine Learning 50 5 43 1033.68081 10.1023/A:1020281327116
    • (2003) Machine Learning , vol.50 , pp. 5-43
    • Andrieu, C.1    De Freitas, N.2    Doucet, A.3    Jordan, M.I.4
  • 3
    • 0000065017 scopus 로고    scopus 로고
    • Ensemble learning in Bayesian neural networks
    • M. Jordan M. Kearns S. Solla (eds). Springer New York
    • Barber, D., & Bishop, C. (1998). Ensemble learning in Bayesian neural networks. In M. Jordan, M. Kearns, & S. Solla (Eds.), Neural Networks and Machine Learning (pp. 215-237). New York: Springer.
    • (1998) Neural Networks and Machine Learning , pp. 215-237
    • Barber, D.1    Bishop, C.2
  • 9
    • 5444223518 scopus 로고    scopus 로고
    • Articulated body motion capture by stochastic search
    • 10.1023/B:VISI.0000043757.18370.9c
    • J. Deutscher I. Reid 2005 Articulated body motion capture by stochastic search International Journal of Computer Vision 61 2 185 205 10.1023/B:VISI.0000043757.18370.9c
    • (2005) International Journal of Computer Vision , vol.61 , Issue.2 , pp. 185-205
    • Deutscher, J.1    Reid, I.2
  • 11
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte-Carlo sampling methods for Bayesian filtering
    • 10.1023/A:1008935410038
    • A. Doucet S. Godsill C. Andrieu 2000 On sequential Monte-Carlo sampling methods for Bayesian filtering Statistics and Computing 10 3 197 208 10.1023/A:1008935410038
    • (2000) Statistics and Computing , vol.10 , Issue.3 , pp. 197-208
    • Doucet, A.1    Godsill, S.2    Andrieu, C.3
  • 14
    • 0031268341 scopus 로고    scopus 로고
    • Factorial Hidden Markov models
    • 0892.68080 10.1023/A:1007425814087
    • Z. Ghahramani M. I. Jordan 1997 Factorial Hidden Markov Models Machine Learning 29 245 273 0892.68080 10.1023/A:1007425814087
    • (1997) Machine Learning , vol.29 , pp. 245-273
    • Ghahramani, Z.1    Jordan, M.I.2
  • 15
    • 2142848605 scopus 로고    scopus 로고
    • Monte Carlo smoothing for nonlinear time series
    • 1089.62517 10.1198/016214504000000151 2054295
    • S. J. Godsill A. Doucet M. West 2004 Monte Carlo smoothing for nonlinear time series Journal of the American Statistical Association 99 465 156 168 1089.62517 10.1198/016214504000000151 2054295
    • (2004) Journal of the American Statistical Association , vol.99 , Issue.465 , pp. 156-168
    • Godsill, S.J.1    Doucet, A.2    West, M.3
  • 17
    • 39549085960 scopus 로고    scopus 로고
    • Constraint integration for efficient multiview pose estimation with self-occlusions
    • 10.1109/TPAMI.2007.1173
    • A. Gupta A. Mittal L. S. Davis 2007 Constraint integration for efficient multiview pose estimation with self-occlusions IEEE Transactions on Pattern Analysis and Machine Intelligence 30 3 493 506 10.1109/TPAMI.2007.1173
    • (2007) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.30 , Issue.3 , pp. 493-506
    • Gupta, A.1    Mittal, A.2    Davis, L.S.3
  • 18
    • 35548932492 scopus 로고    scopus 로고
    • A decentralized probabilistic approach to articulated body tracking
    • DOI 10.1016/j.cviu.2006.11.020, PII S1077314207000136, Spatiotemporal Coherence for Visual Motion Analysis
    • G. Hua Y. Wu 2007 A decentralized probabilistic approach to articulated body tracking Computer Vision and Image Understanding 108 2 272 283 10.1016/j.cviu.2006.11.020 2308431 (Pubitemid 350016964)
    • (2007) Computer Vision and Image Understanding , vol.108 , Issue.3 , pp. 272-283
    • Hua, G.1    Wu, Y.2
  • 20
    • 0032136153 scopus 로고    scopus 로고
    • CONDENSATION-conditional density propagation for visual tracking
    • 10.1023/A:1008078328650
    • M. Isard A. Blake 1998 CONDENSATION-conditional density propagation for visual tracking International Journal of Computer Vision 29 1 5 28 10.1023/A:1008078328650
    • (1998) International Journal of Computer Vision , vol.29 , Issue.1 , pp. 5-28
    • Isard, M.1    Blake, A.2
  • 27
    • 33749990780 scopus 로고    scopus 로고
    • A survey of advances in vision-based human motion capture and analysis
    • DOI 10.1016/j.cviu.2006.08.002, PII S1077314206001263
    • T. Moeslund A. Hilton V. Krüger 2006 A survey of advances in vision-based human motion capture and analysis Computer Vision and Image Understanding 104 2 90 126 10.1016/j.cviu.2006.08.002 (Pubitemid 44573873)
    • (2006) Computer Vision and Image Understanding , vol.104 , Issue.2-3 SPEC. ISS. , pp. 90-126
    • Moeslund, T.B.1    Hilton, A.2    Kruger, V.3
  • 28
    • 34948894442 scopus 로고    scopus 로고
    • Accurately measuring human movement using articulated ICP with soft-joint constraints and a repository of articulated models
    • Mündermann, L., Corazza, S., & Andriacchi, T. (2007). Accurately measuring human movement using articulated ICP with soft-joint constraints and a repository of articulated models. In Proceedings of the IEEE conference on computer vision and pattern recognition.
    • (2007) Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
    • Mündermann, L.1
  • 29
    • 0002788893 scopus 로고    scopus 로고
    • A new view of the em algorithm that justifies incremental, sparse and other variants
    • M. Jordan (eds). Kluwer Academic Dordrecht
    • Neal, R., & Hinton, G. (1998). A new view of the EM algorithm that justifies incremental, sparse and other variants. In M. Jordan (Ed.), Learning in Graphical Models (pp. 355-368). Dordrecht: Kluwer Academic.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.1    Hinton, G.2
  • 40
    • 33749993686 scopus 로고    scopus 로고
    • Conditional models for contextual human motion recognition
    • DOI 10.1016/j.cviu.2006.07.014, PII S1077314206001093
    • C. Sminichisescu A. Kanaujia D. Metaxas 2006 Conditional models for contextual human motion recognition Computer Vision and Image Understanding 104 210 220 10.1016/j.cviu.2006.07.014 (Pubitemid 44573870)
    • (2006) Computer Vision and Image Understanding , vol.104 , Issue.2-3 SPEC. ISS. , pp. 210-220
    • Sminchisescu, C.1    Kanaujia, A.2    Metaxas, D.3
  • 45
    • 33750031202 scopus 로고    scopus 로고
    • Temporal motion models for monocular and multiview 3D human body tracking
    • DOI 10.1016/j.cviu.2006.08.006, PII S1077314206001299
    • R. Urtasun D. J. Fleet P. Fua 2006 Temporal motion models for monocular and multiview 3D human body tracking Computer Vision and Image Understanding 104 157 177 10.1016/j.cviu.2006.08.006 (Pubitemid 44573874)
    • (2006) Computer Vision and Image Understanding , vol.104 , Issue.2-3 SPEC. ISS. , pp. 157-177
    • Urtasun, R.1    Fleet, D.J.2    Fua, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.