메뉴 건너뛰기




Volumn , Issue , 2009, Pages 498-503

Recognition of drug-target interaction patterns using genetic algorithm-optimized Bayesian-regularized neural networks and support vector machines

Author keywords

Enzyme inhibition; Feature selection; In silico drug design; Kernel based methods; Structure activity relationship

Indexed keywords

FEATURE SELECTION; IN-SILICO DRUG DESIGN; KERNEL BASED METHODS; STRUCTURE ACTIVITY RELATIONSHIPS; STRUCTURE-ACTIVITY RELATIONSHIP;

EID: 74849090431     PISSN: 1062922X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICSMC.2009.5346852     Document Type: Conference Paper
Times cited : (3)

References (32)
  • 1
    • 29144521676 scopus 로고    scopus 로고
    • Chemoinformatics: A new field with a long tradition
    • J. Gasteiger. Chemoinformatics: a new field with a long tradition. Anal Bioanal. Chem. 2006, 384:57-64.
    • (2006) Anal Bioanal. Chem , vol.384 , pp. 57-64
    • Gasteiger, J.1
  • 2
    • 0023751431 scopus 로고
    • Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins
    • R. D. Cramer, D. E. Patterson and J. D. Bunce. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 1988, 110:5959-5967.
    • (1988) J Am Chem Soc , vol.110 , pp. 5959-5967
    • Cramer, R.D.1    Patterson, D.E.2    Bunce, J.D.3
  • 3
    • 0027944195 scopus 로고
    • Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity
    • G. Klebe, U. Abraham and T. Mietzner. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem. 1994, 37:4130-4146.
    • (1994) J. Med. Chem , vol.37 , pp. 4130-4146
    • Klebe, G.1    Abraham, U.2    Mietzner, T.3
  • 4
    • 74849090210 scopus 로고    scopus 로고
    • G. Folkers, A. Merz and D. Rognan. CoMFA: scope and limitations, in: Kubinyi, H. (Ed.), 3D-QSAR in Drug Design. Theory, Methods and Applications, ESCOM Science Publishers BV, Leiden, 1993, pp. 583-618.
    • G. Folkers, A. Merz and D. Rognan. CoMFA: scope and limitations, in: Kubinyi, H. (Ed.), 3D-QSAR in Drug Design. Theory, Methods and Applications, ESCOM Science Publishers BV, Leiden, 1993, pp. 583-618.
  • 5
    • 0035263818 scopus 로고    scopus 로고
    • Chem - Bioinformatics and QSAR: A Review of QSAR Lacking Positive Hydrophobic Terms
    • C. Hansch, A. Kurup, R. Garg and H. Gao. Chem - Bioinformatics and QSAR: A Review of QSAR Lacking Positive Hydrophobic Terms. Chem. Rev. 2001, 101:6196-72.
    • (2001) Chem. Rev , vol.101 , pp. 6196-6272
    • Hansch, C.1    Kurup, A.2    Garg, R.3    Gao, H.4
  • 7
    • 0001728908 scopus 로고    scopus 로고
    • Quantum-Chemical Descriptors in QSAR/QSPR Studies
    • M. Karelson, V. S. Lobanov and A. R. Katritzky. Quantum-Chemical Descriptors in QSAR/QSPR Studies. Chem. Rev. 1996, 96: 1027-1043.
    • (1996) Chem. Rev , vol.96 , pp. 1027-1043
    • Karelson, M.1    Lobanov, V.S.2    Katritzky, A.R.3
  • 9
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • R. Burbidge, M. Trotter, B. Buxton and S. Holden. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem, 2001, 26:5-14.
    • (2001) Comput Chem , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 10
    • 74849135326 scopus 로고    scopus 로고
    • MOPAC 6.0. Frank J. Seiler Research Laboratory, Colorado Springs, CO, 1993.
    • MOPAC 6.0. Frank J. Seiler Research Laboratory, Colorado Springs, CO, 1993.
  • 11
    • 0002704818 scopus 로고
    • A practical Bayesian Framework for Backprop Networks
    • D. J. C. Mackay. A practical Bayesian Framework for Backprop Networks. Neural Comput. 1992, 4:448-472.
    • (1992) Neural Comput , vol.4 , pp. 448-472
    • Mackay, D.J.C.1
  • 12
    • 0001025418 scopus 로고
    • Bayesian Interpolation
    • D. J. C. Mackay. Bayesian Interpolation. Neural Comput. 1992, 4:415-447.
    • (1992) Neural Comput , vol.4 , pp. 415-447
    • Mackay, D.J.C.1
  • 13
    • 30744458142 scopus 로고    scopus 로고
    • Linear and non - linear modeling of antifungal activity of some heterocyclic ring derivatives using Multiple Linear Regression and Bayesian - Regularized Neural Networks
    • J. Caballero and M. Fernández, Linear and non - linear modeling of antifungal activity of some heterocyclic ring derivatives using Multiple Linear Regression and Bayesian - Regularized Neural Networks. J Mol Model, 2006, 12:168-181.
    • (2006) J Mol Model , vol.12 , pp. 168-181
    • Caballero, J.1    Fernández, M.2
  • 15
    • 34249753618 scopus 로고
    • Support - Vector Networks
    • C. Cortes and V. Vapnik. Support - Vector Networks. Mach. Learn. 1995, 20:273-297.
    • (1995) Mach. Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 16
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Min Knowledge Discovery, 1998, 2:1-47.
    • (1998) Data Min Knowledge Discovery , vol.2 , pp. 1-47
    • Burges, C.J.C.1
  • 19
    • 27744456972 scopus 로고    scopus 로고
    • Modeling of Farnesyltransferase Inhibition by some Thiol and Non-Thiol Peptidomimetic Inhibitors using Genetic Neural Networks and RDF Approaches
    • M. P. González, J. Caballero, A. Tundidor - Camba, A. M. Helguera and M. Fernández. Modeling of Farnesyltransferase Inhibition by some Thiol and Non-Thiol Peptidomimetic Inhibitors using Genetic Neural Networks and RDF Approaches. Bioorg. Med. Chem. 2006, 14:200-213.
    • (2006) Bioorg. Med. Chem , vol.14 , pp. 200-213
    • González, M.P.1    Caballero, J.2    Tundidor - Camba, A.3    Helguera, A.M.4    Fernández, M.5
  • 20
    • 33646186011 scopus 로고    scopus 로고
    • Linear and nonlinear QSAR study of N-hydroxy-2- [(phenylsulfonyl)amino]acetamide derivatives as matrix metalloproteinase inhibitors
    • M. Fernández, J. Caballero and A. Tundidor - Camba. Linear and nonlinear QSAR study of N-hydroxy-2- [(phenylsulfonyl)amino]acetamide derivatives as matrix metalloproteinase inhibitors. Bioorg Med Chem 2006, 14: 4137-4150.
    • (2006) Bioorg Med Chem , vol.14 , pp. 4137-4150
    • Fernández, M.1    Caballero, J.2    Tundidor - Camba, A.3
  • 21
    • 28944449555 scopus 로고    scopus 로고
    • Modeling of Cyclin-Dependent Kinase Inhibition by 1H - pyrazolo [3,4-d] pyrimidine Derivatives using Artificial Neural Networks Ensembles
    • M. Fernández, A. Tundidor-Camba and J. Caballero. Modeling of Cyclin-Dependent Kinase Inhibition by 1H - pyrazolo [3,4-d] pyrimidine Derivatives using Artificial Neural Networks Ensembles. J Chem Inf Comput Sci 2005, 45:1884-1895.
    • (2005) J Chem Inf Comput Sci , vol.45 , pp. 1884-1895
    • Fernández, M.1    Tundidor-Camba, A.2    Caballero, J.3
  • 22
    • 33750495370 scopus 로고    scopus 로고
    • Bayesian - regularized genetic neural networks applied to the modeling of non - peptide antagonists for the human luteinizing hormone - releasing hormone receptor
    • M. Fernández and J. Caballero. Bayesian - regularized genetic neural networks applied to the modeling of non - peptide antagonists for the human luteinizing hormone - releasing hormone receptor. J Mol Graph Model 2006, 25:410-422.
    • (2006) J Mol Graph Model , vol.25 , pp. 410-422
    • Fernández, M.1    Caballero, J.2
  • 23
    • 0019972810 scopus 로고
    • The cholinergic hypothesis of geriatric memory dysfunction
    • R. T. Bartus, R. L. Dean, B. Beer, and A. S. Lippa.. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982, 217:408-417.
    • (1982) Science , vol.217 , pp. 408-417
    • Bartus, R.T.1    Dean, R.L.2    Beer, B.3    Lippa, A.S.4
  • 24
    • 33751032263 scopus 로고    scopus 로고
    • Ensembles of Bayesian-regularized genetic neural networks for modeling of acetylcholinesterase inhibition by huprines
    • M. Fernández and J. Caballero. Ensembles of Bayesian-regularized genetic neural networks for modeling of acetylcholinesterase inhibition by huprines. Chem Biol Drug Des 2006, 68:201-12.
    • (2006) Chem Biol Drug Des , vol.68 , pp. 201-212
    • Fernández, M.1    Caballero, J.2
  • 25
    • 33845769362 scopus 로고    scopus 로고
    • Modeling of acetylcholinesterase inhibition by tacrine analogues using Bayesian - regularized Genetic Neural Networks and ensemble averaging
    • M. Fernandez, M. C. Carreiras, J. L. Marco and J. Caballero. Modeling of acetylcholinesterase inhibition by tacrine analogues using Bayesian - regularized Genetic Neural Networks and ensemble averaging. J Enz Inh Med Chem 2006, 21:647-661.
    • (2006) J Enz Inh Med Chem , vol.21 , pp. 647-661
    • Fernandez, M.1    Carreiras, M.C.2    Marco, J.L.3    Caballero, J.4
  • 27
    • 27744524965 scopus 로고    scopus 로고
    • Modeling of Activity of Cyclic Urea HIV-1 Protease Inhibitors using Regularized - Artificial Neural Networks
    • M. Fernández and J. Caballero. Modeling of Activity of Cyclic Urea HIV-1 Protease Inhibitors using Regularized - Artificial Neural Networks. Bioorg Med Chem 2006, 14:280-294.
    • (2006) Bioorg Med Chem , vol.14 , pp. 280-294
    • Fernández, M.1    Caballero, J.2
  • 29
    • 33646488015 scopus 로고    scopus 로고
    • 2D Autocorrelation modeling of the negative inotropic activity of calcium entry blockers using Bayesian-regularized genetic neural networks
    • J. Caballero, M. Garriga, and M. Fernández. 2D Autocorrelation modeling of the negative inotropic activity of calcium entry blockers using Bayesian-regularized genetic neural networks. Bioorg. Med. Chem. 2006, 14:3330-3340.
    • (2006) Bioorg. Med. Chem , vol.14 , pp. 3330-3340
    • Caballero, J.1    Garriga, M.2    Fernández, M.3
  • 30
    • 33846815342 scopus 로고    scopus 로고
    • Modeling of the Inhibition Constant (Ki) of Some Cruzain Ketone-Based Inhibitors Using 2D Spatial Autocorrelation Vectors and Data - Diverse Ensembles of Bayesian - Regularized Genetic Neural Networks
    • J. Caballero, A. Tundidor - Camba, and M. Fernández, Modeling of the Inhibition Constant (Ki) of Some Cruzain Ketone-Based Inhibitors Using 2D Spatial Autocorrelation Vectors and Data - Diverse Ensembles of Bayesian - Regularized Genetic Neural Networks. QSAR Comb Sci, 2006, 26: 27-40.
    • (2006) QSAR Comb Sci , vol.26 , pp. 27-40
    • Caballero, J.1    Tundidor - Camba, A.2    Fernández, M.3
  • 31
    • 34250845013 scopus 로고    scopus 로고
    • J. Caballero, L. Fernández, M. Garriga, J. I. Abreu, Collina, S. and Fernández, M. Proteometric study of ghrelin receptor function variations upon mutations using amino acid sequence autocorrelation vectors and genetic algorithm-based least square support vector machines. J Mol Graph Model 2007, 26:166-178.
    • J. Caballero, L. Fernández, M. Garriga, J. I. Abreu, , Collina, S. and Fernández, M. Proteometric study of ghrelin receptor function variations upon mutations using amino acid sequence autocorrelation vectors and genetic algorithm-based least square support vector machines. J Mol Graph Model 2007, 26:166-178.
  • 32
    • 42749090642 scopus 로고    scopus 로고
    • M. Fernández, L. Fernández, J. I. Abreu and M. Garriga. of voltage - gated K(+) ion channels from 3D pseudo-folding graph representation of protein sequences using genetic algorithm - optimized support vector machines. J Mol Graph Model 2008, 26:1306-1314.
    • M. Fernández, L. Fernández, J. I. Abreu and M. Garriga. of voltage - gated K(+) ion channels from 3D pseudo-folding graph representation of protein sequences using genetic algorithm - optimized support vector machines. J Mol Graph Model 2008, 26:1306-1314.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.