메뉴 건너뛰기




Volumn , Issue , 2009, Pages 583-592

Frequent subgraph pattern mining on uncertain graph data

Author keywords

Expected support; Subgraph pattern; Uncertain graph

Indexed keywords

EFFICIENT APPROXIMATION ALGORITHMS; ERROR TOLERANCE; FREQUENT SUBGRAPHS; GRAPH DATA; GRAPH DATABASE; MINING ALGORITHMS; PATTERN MINING; SUBGRAPH PATTERN; SUBGRAPHS;

EID: 74549169009     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1645953.1646028     Document Type: Conference Paper
Times cited : (45)

References (30)
  • 1
    • 70350664429 scopus 로고    scopus 로고
    • Frequent pattern mining with uncertain data
    • C. C. Aggarwal, Y. Li, J. Wang, and J. Wang. Frequent pattern mining with uncertain data. In KDD, pages 29-38, 2009.
    • (2009) KDD , pp. 29-38
    • Aggarwal, C.C.1    Li, Y.2    Wang, J.3    Wang, J.4
  • 2
    • 3042523388 scopus 로고    scopus 로고
    • Predicting protein complex membership using probabilistic network reliability
    • S. Asthana, O. D. King, F. D. Gibbons, and F. P. Roth. Predicting protein complex membership using probabilistic network reliability. Genome Research, 14(6):1170-1175, 2004.
    • (2004) Genome Research , vol.14 , Issue.6 , pp. 1170-1175
    • Asthana, S.1    King, O.D.2    Gibbons, F.D.3    Roth, F.P.4
  • 3
    • 70350697587 scopus 로고    scopus 로고
    • Probabilistic frequent itemset mining in uncertain databases
    • T. Bernecker, H.-P. Kriegel, M. Renz, F. Verhein, and A. Züfle. Probabilistic frequent itemset mining in uncertain databases. In KDD, pages 119-128, 2009.
    • (2009) KDD , pp. 119-128
    • Bernecker, T.1    Kriegel, H.-P.2    Renz, M.3    Verhein, F.4    Züfle, A.5
  • 4
    • 57349191578 scopus 로고    scopus 로고
    • Approximation algorithms for clustering uncertain data
    • G. Cormode and A. McGregor. Approximation algorithms for clustering uncertain data. In PODS, pages 191-200, 2008.
    • (2008) PODS , pp. 191-200
    • Cormode, G.1    McGregor, A.2
  • 6
    • 34548329908 scopus 로고    scopus 로고
    • On a routing problem within probabilistic graphs and its application to intermittently connected networks
    • J. Ghosh, H. Q. Ngo, S. Yoon, and C. Qiao. On a routing problem within probabilistic graphs and its application to intermittently connected networks. In INFOCOM, pages 1721-1729, 2007.
    • (2007) INFOCOM , pp. 1721-1729
    • Ghosh, J.1    Ngo, H.Q.2    Yoon, S.3    Qiao, C.4
  • 7
    • 48349139682 scopus 로고    scopus 로고
    • Finding reliable subgraphs from large probabilistic graphs
    • P. Hintsanen and H. Toivonen. Finding reliable subgraphs from large probabilistic graphs. Data Min. Knowl. Discov., 17(1):3-23, 2008.
    • (2008) Data Min. Knowl. Discov , vol.17 , Issue.1 , pp. 3-23
    • Hintsanen, P.1    Toivonen, H.2
  • 8
    • 78149328300 scopus 로고    scopus 로고
    • Efficient mining of frequent subgraphs in the presence of isomorphism
    • J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraphs in the presence of isomorphism. In ICDM, page 549, 2003.
    • (2003) ICDM , pp. 549
    • Huan, J.1    Wang, W.2    Prins, J.3
  • 9
    • 12244294770 scopus 로고    scopus 로고
    • Spin: Mining maximal frequent subgraphs from graph databases
    • J. Huan, W. Wang, J. Prins, and J. Yang. Spin: mining maximal frequent subgraphs from graph databases. In KDD, pages 581-586, 2004.
    • (2004) KDD , pp. 581-586
    • Huan, J.1    Wang, W.2    Prins, J.3    Yang, J.4
  • 10
    • 84974733299 scopus 로고    scopus 로고
    • An apriori-based algorithm for mining frequent substructures from graph data
    • A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent substructures from graph data. In PKDD, pages 13-23, 2000.
    • (2000) PKDD , pp. 13-23
    • Inokuchi, A.1    Washio, T.2    Motoda, H.3
  • 11
    • 0020937083 scopus 로고
    • Monte-carlo algorithms for enumeration and reliability problems
    • R. M. Karp and M. Luby. Monte-carlo algorithms for enumeration and reliability problems. In FOCS, pages 56-64, 1983.
    • (1983) FOCS , pp. 56-64
    • Karp, R.M.1    Luby, M.2
  • 12
    • 36849009202 scopus 로고    scopus 로고
    • Correlation search in graph databases
    • Y. Ke, J. Cheng, and W. Ng. Correlation search in graph databases. In KDD, pages 390-399, 2007.
    • (2007) KDD , pp. 390-399
    • Ke, Y.1    Cheng, J.2    Ng, W.3
  • 13
    • 14844305006 scopus 로고    scopus 로고
    • An efficient algorithm for detecting frequent subgraphs in biological networks
    • M. Koyutürk, A. Grama, and W. Szpankowski. An efficient algorithm for detecting frequent subgraphs in biological networks. Bioinformatics, 20(Suppl. 1):i200-i207, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.SUPPL. 1
    • Koyutürk, M.1    Grama, A.2    Szpankowski, W.3
  • 14
    • 78149312583 scopus 로고    scopus 로고
    • Frequent subgraph discovery
    • M. Kuramochi and G. Karypis. Frequent subgraph discovery. In ICDM, pages 313-320, 2001.
    • (2001) ICDM , pp. 313-320
    • Kuramochi, M.1    Karypis, G.2
  • 15
    • 52649155498 scopus 로고    scopus 로고
    • Summarizing graph patterns
    • Y. Liu, J. Li, and H. Gao. Summarizing graph patterns. In ICDE, pages 903-912, 2008.
    • (2008) ICDE , pp. 903-912
    • Liu, Y.1    Li, J.2    Gao, H.3
  • 16
    • 77955175993 scopus 로고
    • On deterministic approximation of dnf
    • M. Luby and B. Velickovic. On deterministic approximation of dnf. In STOC, pages 430-438, 1991.
    • (1991) STOC , pp. 430-438
    • Luby, M.1    Velickovic, B.2
  • 18
    • 12244294066 scopus 로고    scopus 로고
    • A quickstart in frequent structure mining can make a difference
    • S. Nijssen and J. N. Kok. A quickstart in frequent structure mining can make a difference. In KDD, pages 647-652, 2004.
    • (2004) KDD , pp. 647-652
    • Nijssen, S.1    Kok, J.N.2
  • 19
    • 32344444324 scopus 로고    scopus 로고
    • On mining cross-graph quasi-cliques
    • J. Pei, D. Jiang, and A. Zhang. On mining cross-graph quasi-cliques. In KDD, pages 228-238, 2005.
    • (2005) KDD , pp. 228-238
    • Pei, J.1    Jiang, D.2    Zhang, A.3
  • 20
    • 33747586075 scopus 로고    scopus 로고
    • A direct comparison of protein interaction confidence assignment schemes
    • S. Suthram, T. Shlomi, E. Ruppin, R. Sharan, and T. Ideker. A direct comparison of protein interaction confidence assignment schemes. BMC Bioinformatics, 7(1):360, 2006.
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 360
    • Suthram, S.1    Shlomi, T.2    Ruppin, E.3    Sharan, R.4    Ideker, T.5
  • 21
    • 67649641455 scopus 로고    scopus 로고
    • Decision trees for uncertain data
    • S. Tsang, B. Kao, K. Y. Yip, W.-S. Ho, and S. D. Lee. Decision trees for uncertain data. In ICDE, pages 441-444, 2009.
    • (2009) ICDE , pp. 441-444
    • Tsang, S.1    Kao, B.2    Yip, K.Y.3    Ho, W.-S.4    Lee, S.D.5
  • 22
    • 49249151236 scopus 로고
    • The complexity of computing the permanent
    • L. G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8:189-201, 1979.
    • (1979) Theor. Comput. Sci , vol.8 , pp. 189-201
    • Valiant, L.G.1
  • 23
    • 85008016154 scopus 로고    scopus 로고
    • Discovering frequent graph patterns using disjoint paths
    • N. Vanetik. Discovering frequent graph patterns using disjoint paths. TKDE, 18(11):1441-1456, 2006.
    • (2006) TKDE , vol.18 , Issue.11 , pp. 1441-1456
    • Vanetik, N.1
  • 24
    • 12244251830 scopus 로고    scopus 로고
    • Scalable mining of large disk-based graph databases
    • C. Wang, W. Wang, J. Pei, Y. Zhu, and B. Shi. Scalable mining of large disk-based graph databases. In KDD, pages 316-325, 2004.
    • (2004) KDD , pp. 316-325
    • Wang, C.1    Wang, W.2    Pei, J.3    Zhu, Y.4    Shi, B.5
  • 25
    • 33749600907 scopus 로고    scopus 로고
    • Clan: An algorithm for mining closed cliques from large dense graph databases
    • J. Wang, Z. Zeng, and L. Zhou. Clan: An algorithm for mining closed cliques from large dense graph databases. In ICDE, page 73, 2006.
    • (2006) ICDE , pp. 73
    • Wang, J.1    Zeng, Z.2    Zhou, L.3
  • 26
    • 57149124218 scopus 로고    scopus 로고
    • Mining significant graph patterns by leap search
    • X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant graph patterns by leap search. In SIGMOD, pages 433-444, 2008.
    • (2008) SIGMOD , pp. 433-444
    • Yan, X.1    Cheng, H.2    Han, J.3    Yu, P.S.4
  • 27
    • 78149333073 scopus 로고    scopus 로고
    • gspan: Graph-based substructure pattern mining
    • X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In ICDM, page 721, 2002.
    • (2002) ICDM , pp. 721
    • Yan, X.1    Han, J.2
  • 28
    • 77952334885 scopus 로고    scopus 로고
    • Closegraph: Mining closed frequent graph patterns
    • X. Yan and J. Han. Closegraph: mining closed frequent graph patterns. In KDD, pages 286-295, 2003.
    • (2003) KDD , pp. 286-295
    • Yan, X.1    Han, J.2
  • 29
    • 34547455408 scopus 로고    scopus 로고
    • Out-of-core coherent closed quasi-clique mining from large dense graph databases
    • Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Out-of-core coherent closed quasi-clique mining from large dense graph databases. TODS, 32(2):13, 2007.
    • (2007) TODS , vol.32 , Issue.2 , pp. 13
    • Zeng, Z.1    Wang, J.2    Zhou, L.3    Karypis, G.4
  • 30
    • 57149143965 scopus 로고    scopus 로고
    • Finding frequent items in probabilistic data
    • Q. Zhang, F. Li, and K. Yi. Finding frequent items in probabilistic data. In SIGMOD, 2008.
    • (2008) SIGMOD
    • Zhang, Q.1    Li, F.2    Yi, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.