메뉴 건너뛰기




Volumn , Issue , 2008, Pages 191-199

Approximation algorithms for clustering uncertain data

Author keywords

Clustering; Probabilistic data

Indexed keywords

BICRITERIA APPROXIMATIONS; CLUSTERING; CONSTANT FACTORS; DATA ANALYSIS; K CENTERS; K-MEANS; MINING ALGORITHMS; MINING PROBLEMS; NATURAL GENERALIZATIONS; OPTIMAL CENTERS; PROBABILISTIC DATA; PROBABILITY DENSITIES; RECORD LINKAGES; SENSOR NETWORK MEASUREMENTS; UNCERTAIN DATUMS;

EID: 57349191578     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1376916.1376944     Document Type: Conference Paper
Times cited : (141)

References (28)
  • 9
    • 36148994784 scopus 로고    scopus 로고
    • Efficient query evaluation on probabilistic databases
    • N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. VLDB J., 16(4):523-544, 2007.
    • (2007) VLDB J , vol.16 , Issue.4 , pp. 523-544
    • Dalvi, N.N.1    Suciu, D.2
  • 11
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
    • J. C. Dunn. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3:32-57, 1973.
    • (1973) Journal of Cybernetics , vol.3 , pp. 32-57
    • Dunn, J.C.1
  • 12
    • 0022012617 scopus 로고
    • A simple heuristic for the p-center problem
    • M. Dyer and A. Frieze. A simple heuristic for the p-center problem. Operations Research Letters, 3:285-288, 1985.
    • (1985) Operations Research Letters , vol.3 , pp. 285-288
    • Dyer, M.1    Frieze, A.2
  • 15
    • 0021938963 scopus 로고
    • Clustering to minimize the maximum intercluster distance
    • T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38(2-3):293-306, 1985.
    • (1985) Theoretical Computer Science , vol.38 , Issue.2-3 , pp. 293-306
    • Gonzalez, T.F.1
  • 19
    • 0022064511 scopus 로고
    • A best possible heuristic for the k-center problem
    • May
    • D. Hochbaum and D. Shmoys. A best possible heuristic for the k-center problem. Mathematics of Operations Research, 10(2): 180-184, May 1985.
    • (1985) Mathematics of Operations Research , vol.10 , Issue.2 , pp. 180-184
    • Hochbaum, D.1    Shmoys, D.2
  • 20
    • 0027928863 scopus 로고
    • Applications of weighted voronoi diagrams and randomization to variance-based k-clustering (extended abstract)
    • M. Inaba, N. Katoh, and H. Imai. Applications of weighted voronoi diagrams and randomization to variance-based k-clustering (extended abstract). In Symposium on Computational Geometry, pages 332-339, 1994.
    • (1994) Symposium on Computational Geometry , pp. 332-339
    • Inaba, M.1    Katoh, N.2    Imai, H.3
  • 21
    • 4544376723 scopus 로고    scopus 로고
    • Algorithms for dynamic geometric problems over data streams
    • P. Indyk. Algorithms for dynamic geometric problems over data streams. In ACM Symposium on Theory of Computing, 2004.
    • (2004) ACM Symposium on Theory of Computing
    • Indyk, P.1
  • 25
    • 57349150361 scopus 로고    scopus 로고
    • J. B. MacQueen. Some method for the classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Structures, pages 281-297, 1967.
    • J. B. MacQueen. Some method for the classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Structures, pages 281-297, 1967.
  • 27
    • 0008159601 scopus 로고    scopus 로고
    • An O(log* n) approximation algorithm for the asymmetric p-center problem
    • R. Panigrahy and S. Vishwanathan. An O(log* n) approximation algorithm for the asymmetric p-center problem. J. Algorithms, 27(2):259-268, 1998.
    • (1998) J. Algorithms , vol.27 , Issue.2 , pp. 259-268
    • Panigrahy, R.1    Vishwanathan, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.