메뉴 건너뛰기




Volumn 32, Issue 2, 2007, Pages

Out-of-core coherent closed quasi-clique mining from large dense graph databases

Author keywords

Coherent subgraph; Frequent closed subgraph; Graph mining; Out of core algorithm; Quasi clique

Indexed keywords

COHERENT SUBGRAPHS; FREQUENT CLOSED SUBGRAPHS; GRAPH MINING; OUT-OF-CORE ALGORITHMS; QUASI-CLIQUE;

EID: 34547455408     PISSN: 03625915     EISSN: 15574644     Source Type: Journal    
DOI: 10.1145/1242524.1242530     Document Type: Article
Times cited : (74)

References (53)
  • 9
    • 84976668743 scopus 로고
    • Finding all cliques of an undireced graph
    • BRON, C. AND KERBOSCH, J. 1973. Finding all cliques of an undireced graph. Commun. ACM 16, 9, 575-576.
    • (1973) Commun. ACM , vol.16 , Issue.9 , pp. 575-576
    • BRON, C.1    KERBOSCH, J.2
  • 11
    • 84976214389 scopus 로고    scopus 로고
    • CHAKRABARTI, D. AND FALOUTSOS, C. 2006. Graph mining: Laws, generators, and algorithms. ACM Comput. Surv. 38, 1 (Mar.), Article 2.
    • CHAKRABARTI, D. AND FALOUTSOS, C. 2006. Graph mining: Laws, generators, and algorithms. ACM Comput. Surv. 38, 1 (Mar.), Article 2.
  • 13
    • 24044517207 scopus 로고    scopus 로고
    • Frequent subtree mining - An overview
    • CHI, Y., NIJSSEN, S., MUNTZ, R., AND KOK, J. 2005. Frequent subtree mining - An overview. Fundam. Inf. 66, 1-2, 161-198.
    • (2005) Fundam. Inf , vol.66
    • CHI, Y.1    NIJSSEN, S.2    MUNTZ, R.3    KOK, J.4
  • 15
    • 24344484786 scopus 로고    scopus 로고
    • Frequent substructure-based approaches for classifying chemical compounds
    • DESHPANDE, M., KURAMOCHI, M., AND WALE, N. 2005. Frequent substructure-based approaches for classifying chemical compounds. IEEE Trans. Knowl. Data Eng. 17, 8, 1036-1050.
    • (2005) IEEE Trans. Knowl. Data Eng , vol.17 , Issue.8 , pp. 1036-1050
    • DESHPANDE, M.1    KURAMOCHI, M.2    WALE, N.3
  • 18
    • 0002169158 scopus 로고
    • Knowledge discovery in databases - An overview
    • FRAWLEY, W. J., PIATETSKY-SHAPIRO, G., AND MATHEUS, C. J. 1992. Knowledge discovery in databases - An overview. AI Mag. 13, 3, 57-70.
    • (1992) AI Mag , vol.13 , Issue.3 , pp. 57-70
    • FRAWLEY, W.J.1    PIATETSKY-SHAPIRO, G.2    MATHEUS, C.J.3
  • 23
    • 0035999974 scopus 로고    scopus 로고
    • Clustering gene expression data using a graph-theoretic approach: An application of minimum spanning trees
    • HU, Y., OLMAN, V., AND XU, D. 2002. Clustering gene expression data using a graph-theoretic approach: An application of minimum spanning trees. Bioinformatics 18, 4, 536-545.
    • (2002) Bioinformatics , vol.18 , Issue.4 , pp. 536-545
    • HU, Y.1    OLMAN, V.2    XU, D.3
  • 24
    • 29144474447 scopus 로고    scopus 로고
    • Mining coherent dense subgraphs across massive biological network for functional discovery
    • HU, H., YAN, X., HANG, Y., HAN, J., AND ZHOU, X. J. 2005. Mining coherent dense subgraphs across massive biological network for functional discovery. Bioinformatics 21, 213-221.
    • (2005) Bioinformatics , vol.21 , pp. 213-221
    • HU, H.1    YAN, X.2    HANG, Y.3    HAN, J.4    ZHOU, X.J.5
  • 27
    • 0003037529 scopus 로고
    • Reducibility among combinational problems
    • R. E. Miller and Thatcher eds. Plenum Press, New York
    • KARP, R. 1972. Reducibility among combinational problems. In Complexity of Computer Computations, R. E. Miller and Thatcher eds. Plenum Press, New York. 85-103.
    • (1972) Complexity of Computer Computations , pp. 85-103
    • KARP, R.1
  • 28
    • 34547442219 scopus 로고    scopus 로고
    • Automated identification of three-dimensional common structural features of proteins
    • KATO, H. AND TAKAHASHI, Y. 2001. Automated identification of three-dimensional common structural features of proteins. Genome Inf. 8, 296-297.
    • (2001) Genome Inf , vol.8 , pp. 296-297
    • KATO, H.1    TAKAHASHI, Y.2
  • 31
    • 28244452013 scopus 로고    scopus 로고
    • Discovering frequent episodes and learning hidden Markov models: A formal connection
    • LAXMAN, S. AND UNNIKRISHNAN, K. P. 2005. Discovering frequent episodes and learning hidden Markov models: A formal connection. IEEE Trans. Knowl. Data Eng. 17, 11, 1505-1517.
    • (2005) IEEE Trans. Knowl. Data Eng , vol.17 , Issue.11 , pp. 1505-1517
    • LAXMAN, S.1    UNNIKRISHNAN, K.P.2
  • 32
    • 27144468394 scopus 로고    scopus 로고
    • Discovery of frequent episodes in event sequences
    • MANNILA, H., TOIVONEN, H., AND VERKAMO, A. I. 1997. Discovery of frequent episodes in event sequences. Data Mining Knowl. Discov. 1, 3, 259-289.
    • (1997) Data Mining Knowl. Discov , vol.1 , Issue.3 , pp. 259-289
    • MANNILA, H.1    TOIVONEN, H.2    VERKAMO, A.I.3
  • 33
    • 0000546425 scopus 로고    scopus 로고
    • Classifying molecular sequences using a linkage graph with their pairwise similarities
    • MATSUDA, H., ISHIHARA, T., AND HASHIMOTO, A. 1999. Classifying molecular sequences using a linkage graph with their pairwise similarities. Theor. Comput. Sci. 210, 2, 305-320.
    • (1999) Theor. Comput. Sci , vol.210 , Issue.2 , pp. 305-320
    • MATSUDA, H.1    ISHIHARA, T.2    HASHIMOTO, A.3
  • 34
    • 84867997005 scopus 로고    scopus 로고
    • A fast algorithm for the maximum clique problem
    • OSTERGARD, P. R. 2002. A fast algorithm for the maximum clique problem. Discrete Appl. Math. 120, 1-3, 197-207.
    • (2002) Discrete Appl. Math , vol.120
    • OSTERGARD, P.R.1
  • 35
    • 23944510654 scopus 로고    scopus 로고
    • Aggregate nearest neighbor queries in spatial databases
    • PAPADIAS, D., TAO, Y., MOURATIDIS, K., AND HUI, C. K. 2005. Aggregate nearest neighbor queries in spatial databases. ACM Trans. Database Syst. 30, 2, 529-576.
    • (2005) ACM Trans. Database Syst , vol.30 , Issue.2 , pp. 529-576
    • PAPADIAS, D.1    TAO, Y.2    MOURATIDIS, K.3    HUI, C.K.4
  • 43
    • 33646407818 scopus 로고    scopus 로고
    • Closed constrained gradient mining in retail databases
    • WANG, J., HAN, J., AND PEI, J. 2006a. Closed constrained gradient mining in retail databases. IEEE Trans. Knowl. Data Eng. 18, 6, 764-769.
    • (2006) IEEE Trans. Knowl. Data Eng , vol.18 , Issue.6 , pp. 764-769
    • WANG, J.1    HAN, J.2    PEI, J.3
  • 52
    • 17444389321 scopus 로고    scopus 로고
    • Clustering in dynamic spatial databases
    • ZHANG, J., HSU, W., AND LEE, M. 2005. Clustering in dynamic spatial databases. J. Intell. Inf. Syst. 24, 1, 5-27.
    • (2005) J. Intell. Inf. Syst , vol.24 , Issue.1 , pp. 5-27
    • ZHANG, J.1    HSU, W.2    LEE, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.