메뉴 건너뛰기




Volumn 18, Issue 11, 2006, Pages 1441-1456

Discovering frequent graph patterns using disjoint paths

Author keywords

data mining; Database applications; graph mining; mining methods and algorithms; Web mining

Indexed keywords


EID: 85008016154     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2006.173     Document Type: Article
Times cited : (52)

References (41)
  • 2
    • 0032028932 scopus 로고    scopus 로고
    • Efficient Data Mining for Path Traversal Patterns
    • Mar./Apr.
    • M.S. Chen, J.S. Park, and P.S. Yu, “Efficient Data Mining for Path Traversal Patterns,” IEEE Trans. Knowledge and Data Eng., vol. 10, no. 2, pp. 209–221, Mar./Apr. 1998.
    • (1998) IEEE Trans. Knowledge and Data Eng. , vol.10 , Issue.2 , pp. 209-221
    • Chen, M.S.1    Park, J.S.2    Yu, P.S.3
  • 3
  • 4
    • 24044517207 scopus 로고    scopus 로고
    • Frequent Subtree Mining: An Overview
    • special issue graph and tree mining
    • Y. Chi, S. Nijssen, R.R. Muntz, and J.N. Kok, “Frequent Subtree Mining: An Overview,” Fundamenta Informaticae, special issue graph and tree mining, 2005.
    • (2005) Fundamenta Informaticae
    • Chi, Y.1    Nijssen, S.2    Muntz, R.R.3    Kok, J.N.4
  • 5
    • 0036366148 scopus 로고    scopus 로고
    • APEX: An Adaptive Path Index for XML Data
    • C. Chung, J. Ki Min, and K. Shim, “APEX: An Adaptive Path Index for XML Data,” Proc. SIGMOD Conf. 2002, pp. 121–132, 2002.
    • (2002) Proc. SIGMOD Conf. , pp. 121-132
    • Chung, C.1    Ki Min, J.2    Shim, K.3
  • 7
    • 0027652468 scopus 로고
    • Substructure Discovery Using Minimum Description Length and Background Knowledge
    • J. Cook and L. Holder, “Substructure Discovery Using Minimum Description Length and Background Knowledge,” J. Artificial Intelligence Research, pp. 231–255, 1994.
    • (1994) J. Artificial Intelligence Research , pp. 231-255
    • Cook, J.1    Holder, L.2
  • 16
  • 18
    • 0037364958 scopus 로고    scopus 로고
    • Complete Mining of Frequent Patterns from Graphs, Mining Graph Data
    • A. Inokuchi, T. Washio, and H. Motoda, “Complete Mining of Frequent Patterns from Graphs, Mining Graph Data,” Machine Learning, vol. 50, no. 3, pp. 321–354, 2003.
    • (2003) Machine Learning , vol.50 , Issue.3 , pp. 321-354
    • Inokuchi, A.1    Washio, T.2    Motoda, H.3
  • 20
    • 4544385908 scopus 로고    scopus 로고
    • An Efficient Algorithm for Discovering Frequent Subgraphs
    • Sept.
    • M. Kuramochi and G. Karypis, “An Efficient Algorithm for Discovering Frequent Subgraphs,” IEEE Trans. Knowledge and Data Eng., vol. 16, no. 9, Sept. 2004.
    • (2004) IEEE Trans. Knowledge and Data Eng. , vol.16 , Issue.9
    • Kuramochi, M.1    Karypis, G.2
  • 24
    • 2442520027 scopus 로고    scopus 로고
    • Discovering Associations in XML Data
    • technical report, Ben-Gurion Univ.
    • A. Meisels, M. Orlov, and T. Maor, “Discovering Associations in XML Data,” technical report, Ben-Gurion Univ., 2001.
    • (2001)
    • Meisels, A.1    Orlov, M.2    Maor, T.3
  • 26
    • 0028429573 scopus 로고
    • Inductive Logic Programming: Theory and Methods
    • S. Muggleton and L. DeRaedt, “Inductive Logic Programming: Theory and Methods,” J. Logic Programming, vol. 19, no. 2, pp. 629–679, 1994.
    • (1994) J. Logic Programming , vol.19 , Issue.2 , pp. 629-679
    • Muggleton, S.1    DeRaedt, L.2
  • 28
    • 79956911778 scopus 로고    scopus 로고
    • Internet Movie Database
    • Internet Movie Database, http://us.imdb.com, 2002.
    • (2002)
  • 29
    • 0031697713 scopus 로고    scopus 로고
    • A Geometric Algorithm to Find Small but Highly Similar 3D Substructures in Proteins
    • X. Pennec and N. Ayache, “A Geometric Algorithm to Find Small but Highly Similar 3D Substructures in Proteins,” Bioinformatics, vol. 14, no. 6, pp. 516–522, 1998.
    • (1998) Bioinformatics , vol.14 , Issue.6 , pp. 516-522
    • Pennec, X.1    Ayache, N.2
  • 31
    • 0004489734 scopus 로고    scopus 로고
    • The Design and Performance Evaluation of Alternative XML Storage Strategies
    • technical report, Computer Sciences Dept., Univ. of Wisconsin
    • F. Tian, D. DeWitt, J. Chen, and C. Zhang, “The Design and Performance Evaluation of Alternative XML Storage Strategies,” technical report, Computer Sciences Dept., Univ. of Wisconsin, 2000.
    • (2000)
    • Tian, F.1    DeWitt, D.2    Chen, J.3    Zhang, C.4
  • 33
    • 2442423029 scopus 로고    scopus 로고
    • Mining Frequent Labeled and Partially Labeled Graph Patterns
    • N. Vanetik and E. Gudes, “Mining Frequent Labeled and Partially Labeled Graph Patterns,” Proc. Int'l Conf. Data Eng. (ICDE '04), pp. 91–102, 2004.
    • (2004) Proc. Int'l Conf. Data Eng. (ICDE '04) , pp. 91-102
    • Vanetik, N.1    Gudes, E.2
  • 35
    • 0032283420 scopus 로고    scopus 로고
    • Discovering Typical Structures of Documents: A Road Map Approach
    • K. Wang and H. Liu, “Discovering Typical Structures of Documents: A Road Map Approach,” Proc. SIGIR Conf., pp. 146–154, 1998.
    • (1998) Proc. SIGIR Conf. , pp. 146-154
    • Wang, K.1    Liu, H.2
  • 36
    • 0036650077 scopus 로고    scopus 로고
    • Finding Patterns in Three-Dimensional Graphs: Algorithms and Applications to Scientific Data Mining
    • July/Aug.
    • X. Wang, J.T. Li Wang, D. Shasha, B. Shapiro, I. Rigoutsos, and K. Zhang, “Finding Patterns in Three-Dimensional Graphs: Algorithms and Applications to Scientific Data Mining,” IEEE Trans. Knowledge and Data Eng., vol. 14, no. 4, pp. 731–749, July/Aug. 2002.
    • (2002) IEEE Trans. Knowledge and Data Eng. , vol.14 , Issue.4 , pp. 731-749
    • Wang, X.1    Li Wang, J.T.2    Shasha, D.3    Shapiro, B.4    Rigoutsos, I.5    Zhang, K.6
  • 37
    • 12244307653 scopus 로고    scopus 로고
    • State of the Art of Graph-Based Data Mining
    • July
    • T. Washio and H. Motoda, “State of the Art of Graph-Based Data Mining,” SIGKDD Explorations, July 2003.
    • (2003) SIGKDD Explorations
    • Washio, T.1    Motoda, H.2
  • 38
    • 0003948494 scopus 로고
    • Social Network Analysis: Methods and Applications (Structural Analysis in the Social Sciences)
    • Cambridge Univ. Press
    • S. Wasserman, K. Faust, and D. Iacobucci, Social Network Analysis: Methods and Applications (Structural Analysis in the Social Sciences). Cambridge Univ. Press, 1994.
    • (1994)
    • Wasserman, S.1    Faust, K.2    Iacobucci, D.3
  • 39
    • 78149333073 scopus 로고    scopus 로고
    • gSpan: Graph-Based Substructure Pattern Mining
    • X. Yan and J. Han, “gSpan: Graph-Based Substructure Pattern Mining,” Proc. Int'l Conf. Data Mining, pp. 721–724, 2002.
    • (2002) Proc. Int'l Conf. Data Mining , pp. 721-724
    • Yan, X.1    Han, J.2
  • 41
    • 0028460882 scopus 로고
    • Graph-Based Induction as a Unified Learning Framework
    • K. Yoshida, H. Motoda, and N. Indurkhya, “Graph-Based Induction as a Unified Learning Framework,” J. Applied Intelligence, pp. 297–328, 1994.
    • (1994) J. Applied Intelligence , pp. 297-328
    • Yoshida, K.1    Motoda, H.2    Indurkhya, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.