메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1347-1356

A risk minimization framework for domain adaptation

Author keywords

Domain adaptation; Label relation; Risk minimization; Source domain; Target domain

Indexed keywords

DATA DISTRIBUTION; DIFFERENT DOMAINS; DIFFERENT SIZES; DOMAIN ADAPTATION; EMPIRICAL RISKS; ERROR BOUND; GENERIC ALGORITHM; HIGH QUALITY; LEARNING FRAMEWORKS; NEW CONCEPT; NOISE LEVELS; NON-TRIVIAL; REAL WORLD DATA; RISK MINIMIZATION; SEARCH RESULTS; TARGET DOMAIN; TRAINING SETS;

EID: 74549138576     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1645953.1646123     Document Type: Conference Paper
Times cited : (3)

References (38)
  • 1
    • 84859921107 scopus 로고    scopus 로고
    • A high-performance semi-supervised learning method for text chunking
    • Association for Computational Linguistics Morristown, NJ, USA
    • R. Ando and T. Zhang. A high-performance semi-supervised learning method for text chunking. In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pages 1-9. Association for Computational Linguistics Morristown, NJ, USA, 2005.
    • (2005) Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics , pp. 1-9
    • Ando, R.1    Zhang, T.2
  • 16
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. Friedman. Greedy function approximation: a gradient boosting machine. Annals of Statistics, pages 1189-1232, 2001.
    • (2001) Annals of Statistics , pp. 1189-1232
    • Friedman, J.1
  • 19
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • N. Japkowicz and S. Stephen. The class imbalance problem: A systematic study. Intelligent Data Analysis, 6(5):429-449, 2002.
    • (2002) Intelligent Data Analysis , vol.6 , Issue.5 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 25
    • 31844444368 scopus 로고    scopus 로고
    • X. Liao, Y. Xue, and L. Carin. Logistic regression with an auxiliary data source. In MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN CONFERENCE-, 22, page 505, 2005.
    • X. Liao, Y. Xue, and L. Carin. Logistic regression with an auxiliary data source. In MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN CONFERENCE-, volume 22, page 505, 2005.
  • 30
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled and unlabeled documents using EM. Machine learning, 39(2):103-134, 2000.
    • (2000) Machine learning , vol.39 , Issue.2 , pp. 103-134
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 31
    • 70350633261 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Technical Report HKUST-CS08-08, Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong, China, November
    • S. J. Pan and Q. Yang. A survey on transfer learning. Technical Report HKUST-CS08-08, Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong, China, November 2008.
    • (2008)
    • Pan, S.J.1    Yang, Q.2
  • 34
    • 70049090801 scopus 로고    scopus 로고
    • An empirical analysis of domain adaptation algorithms for genomic sequence analysis
    • G. Schweikert, C. Widmer, B. Schölkopf, and G. Rätsch. An empirical analysis of domain adaptation algorithms for genomic sequence analysis. In NIPS, pages 1433-1440, 2008.
    • (2008) NIPS , pp. 1433-1440
    • Schweikert, G.1    Widmer, C.2    Schölkopf, B.3    Rätsch, G.4
  • 35
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • H. Shimodaira. Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of Statistical Planning and Inference, 90(2):227-244, 2000.
    • (2000) Journal of Statistical Planning and Inference , vol.90 , Issue.2 , pp. 227-244
    • Shimodaira, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.