-
1
-
-
34548817885
-
-
Nechab M., Azzi N., Vanthuyne N., Bertrand M.P., Gastaldi S., and Gil G. J. Org. Chem. 72 (2007) 6918
-
(2007)
J. Org. Chem.
, vol.72
, pp. 6918
-
-
Nechab, M.1
Azzi, N.2
Vanthuyne, N.3
Bertrand, M.P.4
Gastaldi, S.5
Gil, G.6
-
2
-
-
58149179189
-
-
Nechab M., El Blidi L., Vanthuyne N., Gastaldi S., Bertrand M.P., and Gil G. Org. Biomol. Chem. 6 (2008) 3917
-
(2008)
Org. Biomol. Chem.
, vol.6
, pp. 3917
-
-
Nechab, M.1
El Blidi, L.2
Vanthuyne, N.3
Gastaldi, S.4
Bertrand, M.P.5
Gil, G.6
-
3
-
-
33947171039
-
-
Gastaldi S., Escoubet S., Vanthuyne N., Gil G., and Bertrand M.P. Org. Lett. 9 (2007) 837
-
(2007)
Org. Lett.
, vol.9
, pp. 837
-
-
Gastaldi, S.1
Escoubet, S.2
Vanthuyne, N.3
Gil, G.4
Bertrand, M.P.5
-
4
-
-
0000626186
-
-
The spatial arrangement of the catalytic triad in the protease active site is the mirror image of that in lipases. As a consequence, their enantiopreference is opposite to that of lipases. See:
-
The spatial arrangement of the catalytic triad in the protease active site is the mirror image of that in lipases. As a consequence, their enantiopreference is opposite to that of lipases. See:. Fitzpatrick P.A., and Klibanov A.M. J. Am. Chem. Soc. 113 (1991) 3166
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 3166
-
-
Fitzpatrick, P.A.1
Klibanov, A.M.2
-
7
-
-
33845184335
-
-
For other examples of protease-mediated amine acylation, see:
-
For other examples of protease-mediated amine acylation, see:. Kitagushi H., Fitzpatrick P.A., Huber J.E., and Klibanov A.M. J. Am. Chem. Soc. 111 (1989) 3094
-
(1989)
J. Am. Chem. Soc.
, vol.111
, pp. 3094
-
-
Kitagushi, H.1
Fitzpatrick, P.A.2
Huber, J.E.3
Klibanov, A.M.4
-
8
-
-
0027112820
-
-
Gutman A.L., Meyer E., Kalerin E., Polyack F., and Sterling J. Biotechnol. Bioeng. 40 (1992) 760
-
(1992)
Biotechnol. Bioeng.
, vol.40
, pp. 760
-
-
Gutman, A.L.1
Meyer, E.2
Kalerin, E.3
Polyack, F.4
Sterling, J.5
-
9
-
-
0000127204
-
-
Orsat B., Alper P.B., Moree W., Mak C.-P., and Wong C.-H. J. Am. Chem. Soc. 118 (1996) 712
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 712
-
-
Orsat, B.1
Alper, P.B.2
Moree, W.3
Mak, C.-P.4
Wong, C.-H.5
-
13
-
-
40949160930
-
-
Routaboul L., Vanthuyne N., Gastaldi S., Gil G., and Bertrand M.P. J. Org. Chem. 73 (2008) 364
-
(2008)
J. Org. Chem.
, vol.73
, pp. 364
-
-
Routaboul, L.1
Vanthuyne, N.2
Gastaldi, S.3
Gil, G.4
Bertrand, M.P.5
-
14
-
-
64249095580
-
-
El Blidi L., Nechab M., Vanthuyne N., Gastaldi S., Gil G., and Bertrand M.P. J. Org. Chem. 74 (2009) 2901-2903
-
(2009)
J. Org. Chem.
, vol.74
, pp. 2901-2903
-
-
El Blidi, L.1
Nechab, M.2
Vanthuyne, N.3
Gastaldi, S.4
Gil, G.5
Bertrand, M.P.6
-
15
-
-
0023729499
-
-
For structural comparisons of subtilisins and some alkaline proteases, see:
-
For structural comparisons of subtilisins and some alkaline proteases, see:. McPhalen C.A., and James M.N.G. Biochemistry 27 (1988) 6582
-
(1988)
Biochemistry
, vol.27
, pp. 6582
-
-
McPhalen, C.A.1
James, M.N.G.2
-
17
-
-
0029161756
-
-
Miyatake H.H., Hata Y., Fujii T., Hamada K., Morihara K., and Katsube Y. J. Biochem. 118 (1995) 474
-
(1995)
J. Biochem.
, vol.118
, pp. 474
-
-
Miyatake, H.H.1
Hata, Y.2
Fujii, T.3
Hamada, K.4
Morihara, K.5
Katsube, Y.6
-
18
-
-
0026728830
-
-
van der Laan J.M., Teplyakov A.V., Kelders H., Kalk K.H., Misset O., Mulleners L.J.S.M., and Dijkstra B.W. Protein Eng. 5 (1992) 405
-
(1992)
Protein Eng.
, vol.5
, pp. 405
-
-
van der Laan, J.M.1
Teplyakov, A.V.2
Kelders, H.3
Kalk, K.H.4
Misset, O.5
Mulleners, L.J.S.M.6
Dijkstra, B.W.7
-
21
-
-
0036882398
-
-
For a general review, see:
-
For a general review, see:. Bordusa F. Chem. Rev. 102 (2002) 4817
-
(2002)
Chem. Rev.
, vol.102
, pp. 4817
-
-
Bordusa, F.1
-
22
-
-
29344468620
-
-
For the use of coated subtilisin in alcohol DKR, see:
-
For the use of coated subtilisin in alcohol DKR, see:. Borén L., Martín-Matute B., Xu Y., Córdova A., and Bäckvall J.-E. Chem. Eur. J. 12 (2006) 225
-
(2006)
Chem. Eur. J.
, vol.12
, pp. 225
-
-
Borén, L.1
Martín-Matute, B.2
Xu, Y.3
Córdova, A.4
Bäckvall, J.-E.5
-
23
-
-
0141757457
-
-
Kim M.-J., Chung Y.I., Choi Y.K., Li H.K., Kim D., and Park J. J. Am. Chem. Soc. 125 (2003) 11494
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 11494
-
-
Kim, M.-J.1
Chung, Y.I.2
Choi, Y.K.3
Li, H.K.4
Kim, D.5
Park, J.6
-
24
-
-
0036862312
-
-
See also:
-
See also:. Martinez S.G., Alvira E., Vergara Cordero L., Ferrer A., Montanés-Clemente I., and Barletta G. Biotechnol. Prog. 18 (2002) 1462
-
(2002)
Biotechnol. Prog.
, vol.18
, pp. 1462
-
-
Martinez, S.G.1
Alvira, E.2
Vergara Cordero, L.3
Ferrer, A.4
Montanés-Clemente, I.5
Barletta, G.6
-
26
-
-
74349099529
-
-
note
-
No enantioselectivity was observed with these enzymes, even under different experimental conditions.
-
-
-
-
27
-
-
84890232906
-
-
2nd ed, Wiley-VCH: Weinheim, Chapter 6 and references cited therein
-
Bornscheuer, U. T.; Kazlauskas, R. J. In Hydrolases in Organic Synthesis, Regio- and Stereoselective Biotransformations, 2nd ed.; Wiley-VCH: Weinheim, 2006; Chapter 6 and references cited therein.
-
(2006)
Hydrolases in Organic Synthesis, Regio- and Stereoselective Biotransformations
-
-
Bornscheuer, U.T.1
Kazlauskas, R.J.2
-
28
-
-
0141507063
-
-
Trifluoroethanol is known as a good leaving group for enzymatic acylations, for a general review on acyl donors, see: and relevant references cited therein
-
Trifluoroethanol is known as a good leaving group for enzymatic acylations, for a general review on acyl donors, see:. Hanefeld U. Org. Biomol. Chem. 1 (2003) 2405 and relevant references cited therein
-
(2003)
Org. Biomol. Chem.
, vol.1
, pp. 2405
-
-
Hanefeld, U.1
-
30
-
-
0027245444
-
-
Graham L.D., Haggett K.D., Jennings P.A., Le Brocque D.S., Whittaker R.G., and Schober P.A. Biochemistry 32 (1993) 6250
-
(1993)
Biochemistry
, vol.32
, pp. 6250
-
-
Graham, L.D.1
Haggett, K.D.2
Jennings, P.A.3
Le Brocque, D.S.4
Whittaker, R.G.5
Schober, P.A.6
-
31
-
-
0032854494
-
-
The use of N-protected amino acid carbamoylesters as acyl donors was also shown to accelerate the rate the α-CT-catalyzed amidation of chiral amines. See:
-
The use of N-protected amino acid carbamoylesters as acyl donors was also shown to accelerate the rate the α-CT-catalyzed amidation of chiral amines. See:. Miyazawa T., Yabuuchi N., Yanagihara R., and Yamada T. Biotechnol. Lett. 21 (1999) 725
-
(1999)
Biotechnol. Lett.
, vol.21
, pp. 725
-
-
Miyazawa, T.1
Yabuuchi, N.2
Yanagihara, R.3
Yamada, T.4
-
32
-
-
3342896843
-
-
For another application of the concept of substrate mimetics, see:
-
For another application of the concept of substrate mimetics, see:. Günther R., Elsner C., Schmidt S., Hofmann H.-J., and Bordusa F. Org. Biomol. Chem. 2 (2004) 1442
-
(2004)
Org. Biomol. Chem.
, vol.2
, pp. 1442
-
-
Günther, R.1
Elsner, C.2
Schmidt, S.3
Hofmann, H.-J.4
Bordusa, F.5
-
33
-
-
74349097111
-
-
note
-
For each acyl donor conversion was monitored by GC and HPLC. No significant incidence of conversion rate on the calculated E-value was noticed.
-
-
-
-
34
-
-
74349098342
-
-
note
-
With donor 3a, 5% conversion was detected in 2 h (14% in 5 h) for the non catalyzed reaction performed in 3-methyl-3-pentanol at 21 °C at 0.5 M concentration. With donor 3d, under the same experimental conditions 2% conversion was registered in 2 h (4% in 5 h). With donor 3f, the conversion was 2% in 2 h (15% in 5 h).
-
-
-
-
36
-
-
0022445901
-
-
Estell D.A., Graycar T.P., Miller J.V., Powers D.B., Wells J.A., Burnier J.P., and Ng P.G. Science 233 (1986) 659
-
(1986)
Science
, vol.233
, pp. 659
-
-
Estell, D.A.1
Graycar, T.P.2
Miller, J.V.3
Powers, D.B.4
Wells, J.A.5
Burnier, J.P.6
Ng, P.G.7
-
37
-
-
0028914722
-
-
3 for the S1 and P1 side chains was deduced from the reactivity of subtilisin mutants, see:
-
3 for the S1 and P1 side chains was deduced from the reactivity of subtilisin mutants, see:. Perona J.J., and Craik C.S. Protein Sci. 4 (1995) 337
-
(1995)
Protein Sci.
, vol.4
, pp. 337
-
-
Perona, J.J.1
Craik, C.S.2
-
40
-
-
74349100028
-
-
note
-
Only the natural (S)-enantiomer substrate was recognized by the enzyme. The resolution performed over 90 min with 2 equiv of racemic acyl donor, instead of 1 equiv (cf. Table 2, entry 8), led to the following results: amine ee (50.1%); 2f de (97.0%), C (34.1%), E (102). The ee of the remaining donor was 22.8%.
-
-
-
-
41
-
-
74349097829
-
-
note
-
2 failed due to the importance of non-catalyzed reaction.
-
-
-
-
42
-
-
11644261806
-
-
Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K., and Olson A.J. J. Comput. Chem. 19 (1998) 1639
-
(1998)
J. Comput. Chem.
, vol.19
, pp. 1639
-
-
Morris, G.M.1
Goodsell, D.S.2
Halliday, R.S.3
Huey, R.4
Hart, W.E.5
Belew, R.K.6
Olson, A.J.7
-
43
-
-
56449128760
-
-
For theoretical approach to reorganization and preorganization in enzymes active sites, see:
-
For theoretical approach to reorganization and preorganization in enzymes active sites, see:. Smith A.T.J., Müller R., Toscano M.D., Kast P., Hellinga H.W., Hilvert D., and Houk K. J. Am. Chem. Soc. 130 (2008) 15361
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 15361
-
-
Smith, A.T.J.1
Müller, R.2
Toscano, M.D.3
Kast, P.4
Hellinga, H.W.5
Hilvert, D.6
Houk, K.7
-
44
-
-
67651163642
-
-
Veld M.A.J., Fransson L., Palmans A.R.A., Meijer E.W., and Hult K. ChemBioChem 10 (2009) 1330
-
(2009)
ChemBioChem
, vol.10
, pp. 1330
-
-
Veld, M.A.J.1
Fransson, L.2
Palmans, A.R.A.3
Meijer, E.W.4
Hult, K.5
-
45
-
-
34547592557
-
-
Davis I.W., Leaver-Fay A., Chen V.B., Block J.N., Kapral G.J., Wang X., Murray L.W., Snoeyink III W.B.A., Richardson J.S., and Richardson D.C. Nucleic Acids Res. 35 (2007) W375
-
(2007)
Nucleic Acids Res.
, vol.35
-
-
Davis, I.W.1
Leaver-Fay, A.2
Chen, V.B.3
Block, J.N.4
Kapral, G.J.5
Wang, X.6
Murray, L.W.7
Snoeyink III, W.B.A.8
Richardson, J.S.9
Richardson, D.C.10
-
46
-
-
74349089022
-
-
See: the website at
-
See: the website at http://dasher.wustl.edu/tinker.
-
-
-
-
51
-
-
74349095837
-
-
ampac 8, 1992-2004 Semichem, Inc. PO Box 1649, Shawnee, ks 66222.
-
ampac 8, 1992-2004 Semichem, Inc. PO Box 1649, Shawnee, ks 66222.
-
-
-
|