메뉴 건너뛰기




Volumn 258, Issue , 2009, Pages 193-206

Active learning using a constructive neural network algorithm

Author keywords

[No Author keywords available]

Indexed keywords


EID: 74049161554     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-642-04512-7_10     Document Type: Conference Paper
Times cited : (5)

References (28)
  • 2
    • 0003979410 scopus 로고    scopus 로고
    • What size neural network gives optimal generalization? Convergence properties of backpropagation
    • Institute for Advanced Computer Studies Univ. of Maryland
    • Lawrence, S., Giles, C.L., Tsoi, A.C.:What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation. In: Technical Report UMIACSTR-96-22 and CS-TR-3617, Institute for Advanced Computer Studies, Univ. of Maryland (1996)
    • (1996) Technical Report UMIACSTR-96-22 and CS-TR-3617
    • Lawrence, S.1    Giles, C.L.2    Tsoi, A.C.3
  • 3
    • 33749869958 scopus 로고    scopus 로고
    • Neural networks architecture selection: Size depends on function complexity
    • Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.), ICANN 2006. Springer, Heidelberg
    • Ǵomez, I., Franco, L., Subirats, J.L., Jerez, J.M.: Neural Networks Architecture Selection: Size Depends on Function Complexity. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol.4131, pp. 122-129. Springer, Heidelberg (2006)
    • (2006) LNCS , vol.4131 , pp. 122-129
    • Ǵomez, I.1    Franco, L.2    Subirats, J.L.3    Jerez, J.M.4
  • 4
    • 36149031331 scopus 로고
    • Learning in feedforward layered networks: The tiling algorithm
    • Mezard,M., Nadal, J.P.: Learning in feedforward layered networks: The tiling algorithm, J. Physics A 22, 2191-2204 (1989)
    • (1989) J. Physics A , vol.22 , pp. 2191-2204
    • Mezard, M.1    Nadal, J.P.2
  • 5
    • 0000783575 scopus 로고
    • The upstart algorithm: A method for constructing and training feedforward neural networks
    • Frean, M.: The upstart algorithm: A method for constructing and training feedforward neural networks. Neural Computation 2, 198-209 (1990)
    • (1990) Neural Computation , vol.2 , pp. 198-209
    • Frean, M.1
  • 6
    • 0033742041 scopus 로고    scopus 로고
    • Constructive neural-network learning algorithms for pattern classification
    • Parekh, R., Yang, J., Honavar, V.: Constructive Neural-Network Learning Algorithms for Pattern Classification. IEEE Transactions on Neural Networks 11, 436-451 (2000)
    • (2000) IEEE Transactions on Neural Networks , vol.11 , pp. 436-451
    • Parekh, R.1    Yang, J.2    Honavar, V.3
  • 7
    • 57149137352 scopus 로고    scopus 로고
    • A New decomposition algorithm for threshold synthesis and generalization of boolean functions
    • Subirats, J.L., Jerez, J.M., Franco, L.: A New Decomposition Algorithm for Threshold Synthesis and Generalization of Boolean Functions. IEEE Transactions on Circuits and Systems I 55, 3188-3196 (2008)
    • (2008) IEEE Transactions on Circuits and Systems i , vol.55 , pp. 3188-3196
    • Subirats, J.L.1    Jerez, J.M.2    Franco, L.3
  • 10
    • 0027274189 scopus 로고
    • Neural network constructive algorithms: Trading generalization for learning efficiency?
    • Smieja, F.J.: Neural network constructive algorithms: trading generalization for learning efficiency? Circuits, systems, and signal processing 12, 331-374 (1993)
    • (1993) Circuits Systems, and Signal Processing , vol.12 , pp. 331-374
    • Smieja, F.J.1
  • 11
    • 84866008319 scopus 로고    scopus 로고
    • Pre-pruning classification trees to reduce overfitting in noisy domains
    • Yin, H., Allinson, N.M., Freeman, R., Keane, J.A., Hubbard, S. (eds.), IDEAL 2002. Springer, Heidelberg
    • Bramer, M.A.: Pre-pruning classification trees to reduce overfitting in noisy domains. In: Yin, H., Allinson, N.M., Freeman, R., Keane, J.A., Hubbard, S. (eds.) IDEAL 2002. LNCS, vol.2412, pp. 7-12. Springer, Heidelberg (2002)
    • (2002) LNCS , vol.2412 , pp. 7-12
    • Bramer, M.A.1
  • 14
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • Cohn, D., Atlas, L., Ladner, R.: Improving Generalization with Active Learning. Mach. Learn. 15, 201-221 (1994)
    • (1994) Mach. Learn. , vol.15 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 15
    • 0028262841 scopus 로고
    • Pedagogical pattern selection strategies
    • Cachin, C.: Pedagogical pattern selection strategies. Neural Networks 7, 175-181 (1994)
    • (1994) Neural Networks , vol.7 , pp. 175-181
    • Cachin, C.1
  • 16
    • 84956214804 scopus 로고
    • Improving a network generalization ability by selecting examples
    • Kinzel,W., Rujan, P.: Improving a network generalization ability by selecting examples. Europhys. Lett. 13, 473-477 (1990)
    • (1990) Europhys. Lett. , vol.13 , pp. 473-477
    • Kinzel, W.1    Rujan, P.2
  • 17
    • 0034293035 scopus 로고    scopus 로고
    • Generalization and selection of examples in feedforward neural networks
    • Franco, L., Cannas, S.A.: Generalization and Selection of Examples in Feedforward Neural Networks. Neural Computation 12(10), 2405-2426 (2000)
    • (2000) Neural Computation , vol.12 , Issue.10 , pp. 2405-2426
    • Franco, L.1    Cannas, S.A.2
  • 19
    • 9444236865 scopus 로고    scopus 로고
    • Comparison of instances seletion algorithms I. Algorithms survey
    • Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.), ICAISC 2004. Springer, Heidelberg
    • Jankowski, N., Grochowski, M.: Comparison of Instances Seletion Algorithms I. Algorithms Survey. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol.3070, pp. 598-603. Springer, Heidelberg (2004)
    • (2004) LNCS (LNAI) , vol.3070 , pp. 598-603
    • Jankowski, N.1    Grochowski, M.2
  • 21
    • 0007133880 scopus 로고
    • Thermal perceptron learning rule
    • Frean, M.: Thermal Perceptron Learning Rule. Neural Computation 4, 946-957 (1992)
    • (1992) Neural Computation , vol.4 , pp. 946-957
    • Frean, M.1
  • 22
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Rosenhlatt, F.: The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65, 386-408 (1959)
    • (1959) Psychological Review , vol.65 , pp. 386-408
    • Rosenhlatt, F.1
  • 23
    • 19544372918 scopus 로고    scopus 로고
    • A quantitative study of their impacts
    • Class noise vs. attribute noise
    • Zhu, X., Wu, X.: Class noise vs. attribute noise: a quantitative study of their impacts. Artif. Intell. Rev. 22, 177-210 (2004)
    • (2004) Artif. Intell. Rev. , vol.22 , pp. 177-210
    • Zhu, X.1    Wu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.