-
2
-
-
0003979410
-
What size neural network gives optimal generalization? Convergence properties of backpropagation
-
Institute for Advanced Computer Studies Univ. of Maryland
-
Lawrence, S., Giles, C.L., Tsoi, A.C.:What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation. In: Technical Report UMIACSTR-96-22 and CS-TR-3617, Institute for Advanced Computer Studies, Univ. of Maryland (1996)
-
(1996)
Technical Report UMIACSTR-96-22 and CS-TR-3617
-
-
Lawrence, S.1
Giles, C.L.2
Tsoi, A.C.3
-
3
-
-
33749869958
-
Neural networks architecture selection: Size depends on function complexity
-
Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.), ICANN 2006. Springer, Heidelberg
-
Ǵomez, I., Franco, L., Subirats, J.L., Jerez, J.M.: Neural Networks Architecture Selection: Size Depends on Function Complexity. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol.4131, pp. 122-129. Springer, Heidelberg (2006)
-
(2006)
LNCS
, vol.4131
, pp. 122-129
-
-
Ǵomez, I.1
Franco, L.2
Subirats, J.L.3
Jerez, J.M.4
-
4
-
-
36149031331
-
Learning in feedforward layered networks: The tiling algorithm
-
Mezard,M., Nadal, J.P.: Learning in feedforward layered networks: The tiling algorithm, J. Physics A 22, 2191-2204 (1989)
-
(1989)
J. Physics A
, vol.22
, pp. 2191-2204
-
-
Mezard, M.1
Nadal, J.P.2
-
5
-
-
0000783575
-
The upstart algorithm: A method for constructing and training feedforward neural networks
-
Frean, M.: The upstart algorithm: A method for constructing and training feedforward neural networks. Neural Computation 2, 198-209 (1990)
-
(1990)
Neural Computation
, vol.2
, pp. 198-209
-
-
Frean, M.1
-
6
-
-
0033742041
-
Constructive neural-network learning algorithms for pattern classification
-
Parekh, R., Yang, J., Honavar, V.: Constructive Neural-Network Learning Algorithms for Pattern Classification. IEEE Transactions on Neural Networks 11, 436-451 (2000)
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, pp. 436-451
-
-
Parekh, R.1
Yang, J.2
Honavar, V.3
-
7
-
-
57149137352
-
A New decomposition algorithm for threshold synthesis and generalization of boolean functions
-
Subirats, J.L., Jerez, J.M., Franco, L.: A New Decomposition Algorithm for Threshold Synthesis and Generalization of Boolean Functions. IEEE Transactions on Circuits and Systems I 55, 3188-3196 (2008)
-
(2008)
IEEE Transactions on Circuits and Systems i
, vol.55
, pp. 3188-3196
-
-
Subirats, J.L.1
Jerez, J.M.2
Franco, L.3
-
10
-
-
0027274189
-
Neural network constructive algorithms: Trading generalization for learning efficiency?
-
Smieja, F.J.: Neural network constructive algorithms: trading generalization for learning efficiency? Circuits, systems, and signal processing 12, 331-374 (1993)
-
(1993)
Circuits Systems, and Signal Processing
, vol.12
, pp. 331-374
-
-
Smieja, F.J.1
-
11
-
-
84866008319
-
Pre-pruning classification trees to reduce overfitting in noisy domains
-
Yin, H., Allinson, N.M., Freeman, R., Keane, J.A., Hubbard, S. (eds.), IDEAL 2002. Springer, Heidelberg
-
Bramer, M.A.: Pre-pruning classification trees to reduce overfitting in noisy domains. In: Yin, H., Allinson, N.M., Freeman, R., Keane, J.A., Hubbard, S. (eds.) IDEAL 2002. LNCS, vol.2412, pp. 7-12. Springer, Heidelberg (2002)
-
(2002)
LNCS
, vol.2412
, pp. 7-12
-
-
Bramer, M.A.1
-
13
-
-
24644505329
-
Pruning training sets for learning of object categories
-
Angelova, A., Abu-Mostafa, Y., Perona, P.: Pruning training sets for learning of object categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol.1, pp. 494-501 (2005)
-
(2005)
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
, vol.1
, pp. 494-501
-
-
Angelova, A.1
Abu-Mostafa, Y.2
Perona, P.3
-
14
-
-
0028424239
-
Improving generalization with active learning
-
Cohn, D., Atlas, L., Ladner, R.: Improving Generalization with Active Learning. Mach. Learn. 15, 201-221 (1994)
-
(1994)
Mach. Learn.
, vol.15
, pp. 201-221
-
-
Cohn, D.1
Atlas, L.2
Ladner, R.3
-
15
-
-
0028262841
-
Pedagogical pattern selection strategies
-
Cachin, C.: Pedagogical pattern selection strategies. Neural Networks 7, 175-181 (1994)
-
(1994)
Neural Networks
, vol.7
, pp. 175-181
-
-
Cachin, C.1
-
16
-
-
84956214804
-
Improving a network generalization ability by selecting examples
-
Kinzel,W., Rujan, P.: Improving a network generalization ability by selecting examples. Europhys. Lett. 13, 473-477 (1990)
-
(1990)
Europhys. Lett.
, vol.13
, pp. 473-477
-
-
Kinzel, W.1
Rujan, P.2
-
17
-
-
0034293035
-
Generalization and selection of examples in feedforward neural networks
-
Franco, L., Cannas, S.A.: Generalization and Selection of Examples in Feedforward Neural Networks. Neural Computation 12(10), 2405-2426 (2000)
-
(2000)
Neural Computation
, vol.12
, Issue.10
, pp. 2405-2426
-
-
Franco, L.1
Cannas, S.A.2
-
18
-
-
0347895067
-
Analysis of new techniques to obtain quality training sets
-
Śanchez, J.S., Barandela, R., Marqúes, A.I., Alejo, R., Badenas, J.: Analysis of new techniques to obtain quality training sets. Pattern Recognition Letters 24, 1015-1022 (2003)
-
(2003)
Pattern Recognition Letters
, vol.24
, pp. 1015-1022
-
-
Śanchez, J.S.1
Barandela, R.2
Marqúes, A.I.3
Alejo, R.4
Badenas, J.5
-
19
-
-
9444236865
-
Comparison of instances seletion algorithms I. Algorithms survey
-
Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.), ICAISC 2004. Springer, Heidelberg
-
Jankowski, N., Grochowski, M.: Comparison of Instances Seletion Algorithms I. Algorithms Survey. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol.3070, pp. 598-603. Springer, Heidelberg (2004)
-
(2004)
LNCS (LNAI)
, vol.3070
, pp. 598-603
-
-
Jankowski, N.1
Grochowski, M.2
-
21
-
-
0007133880
-
Thermal perceptron learning rule
-
Frean, M.: Thermal Perceptron Learning Rule. Neural Computation 4, 946-957 (1992)
-
(1992)
Neural Computation
, vol.4
, pp. 946-957
-
-
Frean, M.1
-
22
-
-
11144273669
-
The perceptron: A probabilistic model for information storage and organization in the brain
-
Rosenhlatt, F.: The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65, 386-408 (1959)
-
(1959)
Psychological Review
, vol.65
, pp. 386-408
-
-
Rosenhlatt, F.1
-
23
-
-
19544372918
-
A quantitative study of their impacts
-
Class noise vs. attribute noise
-
Zhu, X., Wu, X.: Class noise vs. attribute noise: a quantitative study of their impacts. Artif. Intell. Rev. 22, 177-210 (2004)
-
(2004)
Artif. Intell. Rev.
, vol.22
, pp. 177-210
-
-
Zhu, X.1
Wu, X.2
|