메뉴 건너뛰기




Volumn 1, Issue 1, 2007, Pages 2-13

An empirical evaluation of constructive neural network algorithms in classification tasks

Author keywords

CoNN; constructive neural network algorithms; neural networks; NNs

Indexed keywords


EID: 84951714199     PISSN: 1751648X     EISSN: 17516498     Source Type: Journal    
DOI: 10.1504/IJICA.2007.013397     Document Type: Article
Times cited : (24)

References (33)
  • 1
    • 0031240594 scopus 로고    scopus 로고
    • Two constructive methods for designing compact feedfoward networks of threshold units
    • Amaldi, E. and Guenin, B. (1997) ‘Two constructive methods for designing compact feedfoward networks of threshold units’, International Journal of Neural System, Vol. 8, Nos. 5–6, pp.629–645.
    • (1997) International Journal of Neural System , vol.8 , Issue.5-6 , pp. 629-645
    • Amaldi, E.1    Guenin, B.2
  • 2
    • 34548142226 scopus 로고    scopus 로고
    • A comparative evaluation of constructive neural networks methods using PRM and BCP as TLU training algorithms
    • Taiwan
    • Bertini Jr., J.R., Nicoletti, M.C. and Hruschka Jr., E.R. (2006) ‘A comparative evaluation of constructive neural networks methods using PRM and BCP as TLU training algorithms’, Proceedings of the IEEE SMC 2006, Taiwan.
    • (2006) Proceedings of the IEEE SMC 2006
    • Bertini, J.R.1    Nicoletti, M.C.2    Hruschka, E.R.3
  • 3
    • 0003408496 scopus 로고    scopus 로고
    • Irvine, CA: University of California, Department of Information and Computer Science
    • Blake, C.L. and Merz, C.J. (1998) UCI Repository of Machine Learning Databases, Irvine, CA: University of California, Department of Information and Computer Science.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2
  • 4
    • 0028390208 scopus 로고
    • A constructive algorithm that converges for real-valued input patterns
    • Burgess, N. (1994) ‘A constructive algorithm that converges for real-valued input patterns’, International Journal of Neural Systems, Vol. 5, No. 1, pp.59–66.
    • (1994) International Journal of Neural Systems , vol.5 , Issue.1 , pp. 59-66
    • Burgess, N.1
  • 5
    • 10944226441 scopus 로고    scopus 로고
    • Constructive learning techniques for designing neural network systems
    • C.T. Leandes (Ed) San Diego: Academic Press
    • Campbell, C. (1997) ‘Constructive learning techniques for designing neural network systems’, in C.T. Leandes (Ed). Neural Network Systems Technologies and Applications, San Diego: Academic Press.
    • (1997) Neural Network Systems Technologies and Applications
    • Campbell, C.1
  • 6
    • 0000155950 scopus 로고
    • The cascade correlation architecture
    • San Mateo, CA: Morgan Kaufman
    • Fahlman, S. and Lebiere, C. (1990) ‘The cascade correlation architecture’, Advances in Neural Information Processing Systems, Vol. 2, San Mateo, CA: Morgan Kaufman, pp.524–532.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 524-532
    • Fahlman, S.1    Lebiere, C.2
  • 7
    • 0000783575 scopus 로고
    • The upstart algorithm: a method for constructing and training feedforward neural networks
    • Frean, M. (1990) ‘The upstart algorithm: a method for constructing and training feedforward neural networks’, Neural Computation, Vol. 2, pp.198–209.
    • (1990) Neural Computation , vol.2 , pp. 198-209
    • Frean, M.1
  • 8
    • 0007133880 scopus 로고
    • A thermal perceptron learning rule
    • Frean, M. (1992) ‘A thermal perceptron learning rule’, Neural Computation, Vol. 4, pp.946–957.
    • (1992) Neural Computation , vol.4 , pp. 946-957
    • Frean, M.1
  • 13
    • 0029341578 scopus 로고
    • Constructive learning of recurrent neural network: limitations of recurrent cascade correlation and a simple solution
    • Giles, C.L., Chen, D., Sun, G-Z., Chen, H-H., Lee, Y-C. and Goudreau, M.W. (1995) ‘Constructive learning of recurrent neural network: limitations of recurrent cascade correlation and a simple solution’, IEEE Transactions on Neural Networks, Vol. 6, No. 4, pp.829–836.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.4 , pp. 829-836
    • Giles, C.L.1    Chen, D.2    Sun, G.-Z.3    Chen, H.-H.4    Lee, Y.-C.5    Goudreau, M.W.6
  • 16
    • 36149029495 scopus 로고
    • Learning algorithms with optimal stability in neural networks
    • Krauth, W. and Mézard, M. (1987) ‘Learning algorithms with optimal stability in neural networks’, Journal of Physics A, Vol. 20, pp.745–752.
    • (1987) Journal of Physics A , vol.20 , pp. 745-752
    • Krauth, W.1    Mézard, M.2
  • 17
    • 0030190837 scopus 로고    scopus 로고
    • Comments on ‘Constructive learning of recurrent neural networks: limitations of recurrent cascade correlation and a simple solution
    • Kremer, S.C. (1996) ‘Comments on ‘Constructive learning of recurrent neural networks: limitations of recurrent cascade correlation and a simple solution’, IEEE Transactions on Neural Networks, Vol. 7, No. 4, p.1047.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.4 , pp. 1047
    • Kremer, S.C.1
  • 18
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structure learning in feedforward neural networks for regression problems
    • Kwok, T-Y. and Yeung, D-Y. (1999) ‘Constructive algorithms for structure learning in feedforward neural networks for regression problems’, IEEE Transactions on Neural Networks, Vol. 8, pp.630–645.
    • (1999) IEEE Transactions on Neural Networks , vol.8 , pp. 630-645
    • Kwok, T.-Y.1    Yeung, D.-Y.2
  • 19
    • 0030135785 scopus 로고    scopus 로고
    • Constructive training methods for feedforward neural networks with binary weights
    • Mayoraz, E. and Aviolat, F. (1996) ‘Constructive training methods for feedforward neural networks with binary weights’, International Journal of Neural Networks, Vol. 7, pp.149–166.
    • (1996) International Journal of Neural Networks , vol.7 , pp. 149-166
    • Mayoraz, E.1    Aviolat, F.2
  • 21
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller, M.F. (1993) ‘A scaled conjugate gradient algorithm for fast supervised learning’, Neural Networks, Vol. 6, pp.525–533.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 22
    • 0012405584 scopus 로고
    • Constructive neural network learning algorithms for multi-category classification
    • Department of CS, Iowa State University, USA
    • Parekh, R., Yang, J. and Honavar, V. (1995) ‘Constructive neural network learning algorithms for multi-category classification’, Technical Report ISU-CS-TR95–15a, Department of CS, Iowa State University, USA.
    • (1995) Technical Report ISU-CS-TR95–15a
    • Parekh, R.1    Yang, J.2    Honavar, V.3
  • 25
    • 74049118211 scopus 로고    scopus 로고
    • Constructive neural network learning algorithms for multi-class real-valued pattern classification
    • Department of CS, Iowa State University, USA
    • Parekh, R., Yang, J. and Honavar, V. (1997c) ‘Constructive neural network learning algorithms for multi-class real-valued pattern classification’, Technical Report ISU-CS-TR97–06, Department of CS, Iowa State University, USA.
    • (1997) Technical Report ISU-CS-TR97–06
    • Parekh, R.1    Yang, J.2    Honavar, V.3
  • 26
    • 0033742041 scopus 로고    scopus 로고
    • Constructive neural-network learning algorithms for pattern classification
    • Parekh, R., Yang, J. and Honavar, V. (2000) ‘Constructive neural-network learning algorithms for pattern classification’, IEEE Transactions on Neural Networks, Vol. 11, No. 2, pp.436–451.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.2 , pp. 436-451
    • Parekh, R.1    Yang, J.2    Honavar, V.3
  • 27
    • 33749970618 scopus 로고
    • Baricentric correction procedure: a fast method for learning threshold unit
    • Poulard, H. (1995) ‘Baricentric correction procedure: a fast method for learning threshold unit’, Proceedings of WCNN 95, Vol. 1, pp.710–713.
    • (1995) Proceedings of WCNN 95 , vol.1 , pp. 710-713
    • Poulard, H.1
  • 28
    • 33646264149 scopus 로고
    • A convergence theorem for barycentric correction procedure
    • LAAS-CNRS, Toulouse, France
    • Poulard, H. and Estève, D. (1995) ‘A convergence theorem for barycentric correction procedure’, Technical Report 95180, LAAS-CNRS, Toulouse, France.
    • (1995) Technical Report 95180
    • Poulard, H.1    Estève, D.2
  • 29
    • 0027662338 scopus 로고
    • Pruning algorithms – a survey
    • Reed, R. (1993) ‘Pruning algorithms – a survey’, IEEE Transactions on Neural Networks, Vol. 4, No. 5, pp.740–747.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.5 , pp. 740-747
    • Reed, R.1
  • 32
    • 0027274189 scopus 로고
    • Neural network constructive algorithms: trading generalization for learning efficiency?
    • Smieja, F.J. (1993) ‘Neural network constructive algorithms: trading generalization for learning efficiency?’ Circuits, Systems and Signal Processing, Vol. 12, pp.331–374.
    • (1993) Circuits, Systems and Signal Processing , vol.12 , pp. 331-374
    • Smieja, F.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.