메뉴 건너뛰기




Volumn 4131 LNCS - I, Issue , 2006, Pages 122-129

Neural network architecture selection: Size depends on function complexity

Author keywords

[No Author keywords available]

Indexed keywords

BOOLEAN FUNCTIONS; COMPUTATIONAL COMPLEXITY; COMPUTER ARCHITECTURE; COMPUTER SIMULATION; SET THEORY;

EID: 33749869958     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11840817_13     Document Type: Conference Paper
Times cited : (7)

References (21)
  • 2
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • Baum, E.B. & Haussler, D. (1989) What size net gives valid generalization? Neural Computation, 1, pp. 151-160.
    • (1989) Neural Computation , vol.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 3
    • 0003979410 scopus 로고    scopus 로고
    • What size neural network gives optimal generalization? Convergence properties of backpropagation
    • Institute for Advanced Computer Studies, Univ, of Maryland
    • Lawrence, S., Giles, C. L., & Tsoi, A. C. (1996). What Size Neural Network Gives Optimal Generalization ? Convergence Properties of Backpropagation. In Technical Report UMIACS-TR-96-22 and CS-TR-3617, Institute for Advanced Computer Studies, Univ, of Maryland.
    • (1996) Technical Report , vol.UMIACS-TR-96-22 AND CS-TR-3617
    • Lawrence, S.1    Giles, C.L.2    Tsoi, A.C.3
  • 4
    • 84898932856 scopus 로고    scopus 로고
    • Overfitting in neural networks: Backpropagation, conjugate gradient, and early stopping
    • Leen, T. K., Dietterich, T. G. & Tresp, V. editors, MIT Press
    • Caruana, R., Lawrence, S., & Giles, C.L. (2001). Overfitting in Neural Networks: Backpropagation, Conjugate Gradient, and Early Stopping. In Leen, T. K., Dietterich, T. G. & Tresp, V. editors, Advances in Neural Information Processing Systems, MIT Press, 13, pp. 402-408.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 402-408
    • Caruana, R.1    Lawrence, S.2    Giles, C.L.3
  • 5
    • 0000029122 scopus 로고
    • A simple weight decay can improve generalization
    • J.E. Moody, S. J. Hanson, & R. P. Lippmann editors, San Mateo, CA
    • Krogh, A. & Hertz,J.A. (1992) A simple weight decay can improve generalization. In J.E. Moody, S. J. Hanson, & R. P. Lippmann editors, Advances in Neural Information Processing Systems Morgan Kaufmann, San Mateo, CA, 4, pp. 950 957.
    • (1992) Advances in Neural Information Processing Systems Morgan Kaufmann , vol.4 , pp. 950957
    • Krogh, A.1    Hertz, J.A.2
  • 6
    • 0032099978 scopus 로고    scopus 로고
    • Automatic early stopping using cross validation: Quantifying the criteria
    • Prechelt, L. (1998). Automatic Early Stopping Using Cross Validation: Quantifying the Criteria. Neural Networks, 11, pp.761-767.
    • (1998) Neural Networks , vol.11 , pp. 761-767
    • Prechelt, L.1
  • 7
    • 0035654279 scopus 로고    scopus 로고
    • Feedforward neural network construction using cross-validation
    • Setiono,R. (2001) Feedforward neural network construction using cross-validation, Neural Computation, 13, pp. 2865-2877.
    • (2001) Neural Computation , vol.13 , pp. 2865-2877
    • Setiono, R.1
  • 8
    • 84898957627 scopus 로고    scopus 로고
    • For valid generalization the size of the weights is more important than the size of the network
    • M.C, Mozer, M. I. Jordan, & T. Petsche, editors, MIT Press
    • Bartlett,P.L. (1997). For valid generalization the size of the weights is more important than the size of the network. In M.C, Mozer, M. I. Jordan, & T. Petsche, editors, Advances in Neural Information Processing Systems, MIT Press, 9, pp. 134-140.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 134-140
    • Bartlett, P.L.1
  • 10
    • 33646505428 scopus 로고    scopus 로고
    • Generalization ability of Boolean functions implemented in feedforward neural networks
    • In Press
    • Franco, L. Generalization ability of Boolean functions implemented in feedforward neural networks. Neurocomputing. (2006), In Press.
    • (2006) Neurocomputing
    • Franco, L.1
  • 11
    • 33646527957 scopus 로고    scopus 로고
    • The influence of oppositely classified examples on the generalization complexity of Boolean functions
    • In Press
    • Franco, L. and Anthony, M. The influence of oppositely classified examples on the generalization complexity of Boolean functions, IEEE Transactions on Neural Networks. (2006), In Press.
    • (2006) IEEE Transactions on Neural Networks
    • Franco, L.1    Anthony, M.2
  • 14
    • 0346846404 scopus 로고    scopus 로고
    • Non glassy ground-state in a long-range antiferromagnetic frustrated model in the hypercubic cell
    • Franco, L. & Cannas, S.A. (2004), Non glassy ground-state in a long-range antiferromagnetic frustrated model in the hypercubic cell Physica A, 382, pp. 337-348.
    • (2004) Physica A , vol.382 , pp. 337-348
    • Franco, L.1    Cannas, S.A.2
  • 15
    • 0034293035 scopus 로고    scopus 로고
    • Generalization and selection of examples in feedforward neural networks
    • Franco, L. & Cannas, S.A. (2000). Generalization and Selection of Examples in Feedforward Neural Networks. Neural Computation, 12, 10, pp. 2405-2426.
    • (2000) Neural Computation , vol.12 , Issue.10 , pp. 2405-2426
    • Franco, L.1    Cannas, S.A.2
  • 16
    • 0035505551 scopus 로고    scopus 로고
    • Generalization properties of modular networks: Implementing the parity function
    • Franco, L. & Cannas, S.A. (2001). Generalization Properties of Modular Networks: Implementing the Parity Function, IEEE Transactions on Neural Networks, 12, pp. 1306-1313.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 1306-1313
    • Franco, L.1    Cannas, S.A.2
  • 17
    • 0038313118 scopus 로고    scopus 로고
    • Strong association rules mining for large-scale gene-expression data analysis: A case study on human SAGE data
    • Becquet, C. & Blachon, S. & Jeudy, B. & Boulicaut, J.F. & Gandrillon, O. (2002). Strong association rules mining for large-scale gene-expression data analysis: A case study on human SAGE data. Genome Biology, 3, pp. 1-16.
    • (2002) Genome Biology , vol.3 , pp. 1-16
    • Becquet, C.1    Blachon, S.2    Jeudy, B.3    Boulicaut, J.F.4    Gandrillon, O.5
  • 18
    • 0037245822 scopus 로고    scopus 로고
    • Mining gene expressions databases for association rules
    • Creighton, C. & Hanash, S. (2003). Mining gene expressions databases for association rules, Bioinformatics, 19, pp. 79-86.
    • (2003) Bioinformatics , vol.19 , pp. 79-86
    • Creighton, C.1    Hanash, S.2
  • 20
  • 21
    • 25144436369 scopus 로고    scopus 로고
    • Role of function complexity and network size in the generalization ability of feedforward networks
    • Franco, L. & Jerez, J.M. & Bravo. J.M (2005). Role of function complexity and network size in the generalization ability of feedforward networks. LNCS, 3512, pp. 1-8.
    • (2005) LNCS , vol.3512 , pp. 1-8
    • Franco, L.1    Jerez, J.M.2    Bravo, J.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.