-
1
-
-
0025897859
-
Neural net algorithms that learn in polynomial time from examples and queries
-
Baum, E. B. (1991). Neural net algorithms that learn in polynomial time from examples and queries. IEEE Transactions on Neural Networks, 2(1), 5.
-
(1991)
IEEE Transactions on Neural Networks
, vol.2
, Issue.1
, pp. 5
-
-
Baum, E.B.1
-
2
-
-
0001160588
-
What net size gives valid generalization?
-
Baum, E. B., & Haussler, D. (1989). What net size gives valid generalization? Neural Computation, 2(1), 151.
-
(1989)
Neural Computation
, vol.2
, Issue.1
, pp. 151
-
-
Baum, E.B.1
Haussler, D.2
-
3
-
-
0039222654
-
Designing modular artificial neural networks
-
H. A. Wijshoff (Ed.), Amsterdam: SION, Stichting Matematisch Centrum
-
Boers, E. J. W., Kuiper, H., Happel, B. L. M., & Sprinkhuizen-Kuyper, I. G. (1993). Designing modular artificial neural networks. In H. A. Wijshoff (Ed.), Proceedings of Computing Science in the Netherlands (CSN'93) (p. 87). Amsterdam: SION, Stichting Matematisch Centrum.
-
(1993)
Proceedings of Computing Science in the Netherlands (CSN'93)
, pp. 87
-
-
Boers, E.J.W.1
Kuiper, H.2
Happel, B.L.M.3
Sprinkhuizen-Kuyper, I.G.4
-
4
-
-
0010581965
-
Arithmetic perceptrons
-
Cannas, S. A. (1995). Arithmetic perceptrons. Neural Computation, 7(1), 173.
-
(1995)
Neural Computation
, vol.7
, Issue.1
, pp. 173
-
-
Cannas, S.A.1
-
5
-
-
0030221433
-
Neural network exploration using optimal experiment design
-
Cohn, D. (1996). Neural network exploration using optimal experiment design. Neural Networks, 9(6), 1071.
-
(1996)
Neural Networks
, vol.9
, Issue.6
, pp. 1071
-
-
Cohn, D.1
-
6
-
-
0028424239
-
Improving generalization with active learning
-
Cohn, D., Atlas, L., & Ladner, R. (1994). Improving generalization with active learning. Machine Learning, 15(2), 201.
-
(1994)
Machine Learning
, vol.15
, Issue.2
, pp. 201
-
-
Cohn, D.1
Atlas, L.2
Ladner, R.3
-
7
-
-
21844526900
-
On-line learning in the committee machine
-
Copelli, M., & Caticha, N. (1995). On-line learning in the committee machine. J. Phys. A: Math. Gen., 28, 1615.
-
(1995)
J. Phys. A: Math. Gen.
, vol.28
, pp. 1615
-
-
Copelli, M.1
Caticha, N.2
-
8
-
-
0031911201
-
Solving arithmetic problems using feed-forward neural networks
-
Franco, L., & Cannas, S. A. (1998). Solving arithmetic problems using feed-forward neural networks. Neurocomputing, 18, 61-79.
-
(1998)
Neurocomputing
, vol.18
, pp. 61-79
-
-
Franco, L.1
Cannas, S.A.2
-
9
-
-
0028495825
-
Learning nonoverlapping perceptron networks from examples and membership queries
-
Hancock, T. R., Golea, M., & Marchand, M. (1994). Learning nonoverlapping perceptron networks from examples and membership queries. Machine Learning, 16, 161.
-
(1994)
Machine Learning
, vol.16
, pp. 161
-
-
Hancock, T.R.1
Golea, M.2
Marchand, M.3
-
11
-
-
0003979924
-
-
Reading, MA: Addison-Wesley and Santa Fe Institute
-
Hertz, J., Krogh, A., & Palmer, R. (1991). Introduction to the theory of neural computation. Reading, MA: Addison-Wesley and Santa Fe Institute.
-
(1991)
Introduction to the Theory of Neural Computation
-
-
Hertz, J.1
Krogh, A.2
Palmer, R.3
-
12
-
-
21344469705
-
Selection of examples for a linear classifier
-
Jung, G., & Opper, M. (1996). Selection of examples for a linear classifier. J. Phys. A: Math. Gen., 29(7), 1367.
-
(1996)
J. Phys. A: Math. Gen.
, vol.29
, Issue.7
, pp. 1367
-
-
Jung, G.1
Opper, M.2
-
13
-
-
84956214804
-
Improving a network generalization ability by selecting examples
-
Kinzel, W., & Ruján, P. (1990). Improving a network generalization ability by selecting examples. Europhysics Letters, 13(5), 473.
-
(1990)
Europhysics Letters
, vol.13
, Issue.5
, pp. 473
-
-
Kinzel, W.1
Ruján, P.2
-
15
-
-
0027560678
-
Selecting concise training sets from clean data
-
Plutowski, M., & White, H. (1993). Selecting concise training sets from clean data. IEEE Transactions on Neural Networks, 4(2), 305.
-
(1993)
IEEE Transactions on Neural Networks
, vol.4
, Issue.2
, pp. 305
-
-
Plutowski, M.1
White, H.2
-
16
-
-
0000884439
-
Computational capabilities of restricted two layered perceptrons
-
Priel, A., Blatt, M., Grossman, T., Domany, E., & Kanter, I. (1994). Computational capabilities of restricted two layered perceptrons. Physical Review E, 50, 577.
-
(1994)
Physical Review E
, vol.50
, pp. 577
-
-
Priel, A.1
Blatt, M.2
Grossman, T.3
Domany, E.4
Kanter, I.5
-
18
-
-
0006688976
-
Scaling relationships in back-propagation learning: Dependence on predicate order
-
Urbana-Champaign, IL: Center for Complex System Research
-
Tessauro, G., & Janssens, R. (1988). Scaling relationships in back-propagation learning: Dependence on predicate order (Tech. Rep. No. CCSR-88-1). Urbana-Champaign, IL: Center for Complex System Research.
-
(1988)
Tech. Rep. No. CCSR-88-1
-
-
Tessauro, G.1
Janssens, R.2
|