메뉴 건너뛰기




Volumn 2412, Issue , 2002, Pages 7-12

Pre-pruning classification trees to reduce overfitting in noisy domains

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; INFORMATION THEORY;

EID: 84866008319     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-45675-9_2     Document Type: Conference Paper
Times cited : (13)

References (7)
  • 4
    • 0003408496 scopus 로고    scopus 로고
    • Irvine, CA: University of California, Department of Information and Computer Science
    • Blake, C.L. and Merz, C.J. (1998). UCI Repository of Machine Learning Databases [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California, Department of Information and Computer Science
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2
  • 5
    • 79952785777 scopus 로고
    • An Empirical Comparison of Pruning Methods for Decision Tree Induction
    • Mingers, J. (1989). An Empirical Comparison of Pruning Methods for Decision Tree Induction. Machine Learning, 4, pp. 227-243
    • (1989) Machine Learning , vol.4 , pp. 227-243
    • Mingers, J.1
  • 7
    • 0002947110 scopus 로고
    • Rule Induction Using Information Theory
    • In: Piatetsky-Shapiro, G. and Frawley, W.J. (eds.), AAAI Press
    • Smyth, P. and Goodman, R.M. (1991). Rule Induction Using Information Theory. In: Piatetsky-Shapiro, G. and Frawley, W.J. (eds.), Knowledge Discovery in Databases. AAAI Press, pp. 159-176
    • (1991) Knowledge Discovery in Databases , pp. 159-176
    • Smyth, P.1    Goodman, R.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.