메뉴 건너뛰기




Volumn 49, Issue 11, 2009, Pages 2537-2550

Mining statistically significant molecular substructures for efficient molecular classification

Author keywords

[No Author keywords available]

Indexed keywords

MOLECULES; SCAFFOLDS; SUPPORT VECTOR MACHINES;

EID: 72949103757     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci900035z     Document Type: Article
Times cited : (22)

References (58)
  • 1
    • 21244468757 scopus 로고    scopus 로고
    • Searching techniques for databases of two- and threedimensional chemical structures
    • Willett, P. Searching Techniques for Databases of Two- and threedimensional Chemical Structures. J. Med. Chem. 2005, 48, 4183-4199.
    • (2005) J. Med. Chem. , vol.48 , pp. 4183-4199
    • Willett, P.1
  • 2
    • 10344230435 scopus 로고    scopus 로고
    • Molecular similarity: A key technique in molecular informatics
    • Bender, A.; Glen, R. C. Molecular Similarity: A Key Technique in Molecular Informatics. Org. Biomol. Chem. 2004, 2, 3204-3218.
    • (2004) Org. Biomol. Chem. , vol.2 , pp. 3204-3218
    • Bender, A.1    Glen, R.C.2
  • 3
    • 0034521827 scopus 로고    scopus 로고
    • A neural network based virtual high throughput screening test for the prediction of cns activity
    • Keserǔ, G. M.; Molnár, L.; Greiner, I. A Neural Network Based Virtual High Throughput Screening Test for the Prediction of CNS Activity. Comb. Chem. High Throughput Screening 2000, 3, 535-540.
    • (2000) Comb. Chem. High Throughput Screening , vol.3 , pp. 535-540
    • Keserǔ, G.M.1    Molnár, L.2    Greiner, I.3
  • 4
    • 84962476960 scopus 로고    scopus 로고
    • Predicting Physical-chemical Properties of Compounds from Molecular Structures by Recursive Neural Networks
    • Bernazzani, L.; Duce, C.; Micheli, A.; Mollica, V.; Sperduti, A.; Starita, A.; Tiné, M. R. Predicting Physical-chemical Properties of Compounds from Molecular Structures by Recursive Neural Networks. J. Chem. Inf. Model. 2006, 46, 2030-2042.
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 2030-2042
    • Bernazzani, L.1    Duce, C.2    Micheli, A.3    Mollica, V.4    Sperduti, A.5    Starita, A.6    Tiné, M.R.7
  • 5
    • 39449088858 scopus 로고    scopus 로고
    • Naive bayes classification using 2D pharmacophore feature triplet vectors
    • Watson, P. Naive Bayes Classification Using 2D Pharmacophore Feature Triplet vectors. J. Chem. Inf. Model. 2008, 48, 166-178.
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 166-178
    • Watson, P.1
  • 6
    • 0032605748 scopus 로고    scopus 로고
    • Binary QSAR: A new method for the determination of quantitative structure activity relationships
    • World Scientific Publishing Company: Singapore
    • Labute, P. Binary QSAR: A New Method for the Determination of Quantitative Structure Activity Relationships. In Pacific Symposium on Biocomputing; World Scientific Publishing Company: Singapore, 1999; pp 444-455.
    • (1999) Pacific Symposium on Biocomputing , pp. 444-455
    • Labute, P.1
  • 8
    • 0035438388 scopus 로고    scopus 로고
    • Prediction of biological activity for high-throughput screening using binary kernel discrimination
    • Harper, G.; Bradshaw, J.; Gittins, J. C.; Green, D. V. S.; Leach, A. R. Prediction of Biological Activity for High-Throughput Screening Using Binary Kernel Discrimination. J. Chem. Inf. Comput. Sci. 2001, 41, 1295-1300.
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 1295-1300
    • Harper, G.1    Bradshaw, J.2    Gittins, J.C.3    Green, D.V.S.4    Leach, A.R.5
  • 10
    • 0037230507 scopus 로고    scopus 로고
    • Partitioning methods for the identification of active molecules
    • Hanna Eckert, J. B. Partitioning Methods for the Identification of Active Molecules. Curr. Med. Chem. 2003, 8, 707-715.
    • (2003) Curr. Med. Chem. , vol.8 , pp. 707-715
    • Hanna Eckert, J.B.1
  • 11
    • 0037369815 scopus 로고    scopus 로고
    • Classification structure-activity relations (C-SAR) in prediction of human intestinal absorption
    • Zmuidinavicius, D.; Didziapetris, R.; Japertas, P.; Avdeef, A.; Petrauskas, A. Classification Structure-activity Relations (C-SAR) in Prediction of Human Intestinal Absorption. J. Pharm. Sci. 2003, 92, 621-633.
    • (2003) J. Pharm. Sci. , vol.92 , pp. 621-633
    • Zmuidinavicius, D.1    Didziapetris, R.2    Japertas, P.3    Avdeef, A.4    Petrauskas, A.5
  • 12
    • 0141959673 scopus 로고    scopus 로고
    • Partially unified multiple property recursive partitioning (PUMP-RP): A new method for predicting and understanding drug selectivity
    • Stockfisch, T. P. Partially Unified Multiple Property Recursive Partitioning (PUMP-RP): A New Method for Predicting and Understanding Drug Selectivity. J. Chem. Inf. Comput. Sci. 2003, 43, 1608-1613.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1608-1613
    • Stockfisch, T.P.1
  • 13
    • 0033217466 scopus 로고    scopus 로고
    • Analysis of a large structure/biological activity data set using recursive partitioning
    • Rusinko, A.; Farmen, M. W.; Lambert, C. G.; Brown, P. L.; Young, S. S. Analysis of a Large Structure/biological Activity Data Set Using Recursive Partitioning. J. Chem. Inf. Comput. Sci. 1999, 39, 1017-1026.
    • (1999) J. Chem. Inf. Comput. Sci. , vol.39 , pp. 1017-1026
    • Rusinko, A.1    Farmen, M.W.2    Lambert, C.G.3    Brown, P.L.4    Young, S.S.5
  • 14
    • 57149124218 scopus 로고    scopus 로고
    • Mining significant graph patterns by scalable leap search
    • ACM: New York
    • Yan, X.; Cheng, H.; Han, J.; Yu, P. S. Mining Significant Graph Patterns by Scalable Leap Search. In Proceedings of SIGMOD ?08; ACM: New York, 2008.
    • (2008) Proceedings of SIGMOD ' 08
    • Yan, X.1    Cheng, H.2    Han, J.3    Yu, P.S.4
  • 15
    • 0043069489 scopus 로고    scopus 로고
    • Drug research: Myths, hype and reality
    • Kubinyi, H. Drug Research: Myths, Hype and Reality. Nat. Rev. Drug. Discovery 2003, 2, 665-668.
    • (2003) Nat. Rev. Drug. Discovery , vol.2 , pp. 665-668
    • Kubinyi, H.1
  • 16
    • 0029335446 scopus 로고
    • A 3D-QSAR study of anticoccidial triazines using molecular shape analysis
    • Rhyu, K.-B.; Patel, H. C.; Hopfinger, A. J. A 3D-QSAR Study of Anticoccidial Triazines Using Molecular Shape Analysis. J. Chem. Inf. Comput. Sci. 1995, 35, 771-778.
    • (1995) J. Chem. Inf. Comput. Sci. , vol.35 , pp. 771-778
    • Rhyu, K.-B.1    Patel, H.C.2    Hopfinger, A.J.3
  • 18
    • 2042489375 scopus 로고    scopus 로고
    • Symyx Software: San Ramon CA
    • MACCS Structural Keys; Symyx Software: San Ramon, CA, 2005.
    • (2005) MACCS Structural Keys
  • 19
    • 33646610686 scopus 로고    scopus 로고
    • Daylight Chemical Information Systems Inc.: Aliso Viejo CA
    • Daylight Theory Manual; Daylight Chemical Information Systems Inc.: Aliso Viejo, CA, 2008.
    • (2008) Daylight Theory Manual
  • 20
    • 84956824135 scopus 로고    scopus 로고
    • Descriptor-based similarity measures for screening chemical databases
    • Bohm, H.-J., Schneider, G., Eds.; John Wiley & Sons, Inc.: New York
    • Barnard, J.; Downs, G.; Willett, P. Descriptor-Based Similarity Measures for Screening Chemical Databases. In Virtual Screening for BioactiVe Molecules; Bohm, H.-J., Schneider, G., Eds.; John Wiley & Sons, Inc.: New York, 2000; Vol.10, pp 59-80.
    • (2000) Virtual Screening for BioactiVe Molecules , vol.10 , pp. 59-80
    • Barnard, J.1    Downs, G.2    Willett, P.3
  • 23
    • 72949124527 scopus 로고    scopus 로고
    • Wilhelm-Schickard-Institute for Computer Science: Tübingen, Germany
    • JOELib-A JaVa Based Computational Chemistry Package; Wilhelm-Schickard- Institute for Computer Science: Tübingen, Germany, 2009.
    • (2009) JOELib-A JaVa Based Computational Chemistry Package
  • 24
    • 72949096204 scopus 로고    scopus 로고
    • Tripos Inc.: St. Louis MO
    • Unity; Tripos Inc.: St. Louis, MO, 2008.
    • (2008) Unity
  • 25
    • 72949087626 scopus 로고    scopus 로고
    • GPD: A graph pattern diffusion kernel for accurate graph classification with applications in cheminformatics
    • ACM: New York
    • Smalter, A.; Huan, L.; Lushington, G.; Jia, Y. GPD: A Graph Pattern Diffusion Kernel for Accurate Graph Classification with Applications in Cheminformatics. In Proceedings of BIOKDD; ACM: New York, 2008.
    • (2008) Proceedings of BIOKDD
    • Smalter, A.1    Huan, L.2    Lushington, G.3    Jia, Y.4
  • 26
    • 70350488120 scopus 로고    scopus 로고
    • version 3.5; Bioreason, Inc.: Santa Fe, NM
    • ClassPharmer Suite, version 3.5; Bioreason, Inc.: Santa Fe, NM, 2000.
    • (2000) ClassPharmer Suite
  • 31
    • 67649644367 scopus 로고    scopus 로고
    • GraphSig: A scalable approach to mining significant subgraphs in large graph databases
    • IEEE Computer Society: Washington, DC
    • Ranu, S.; Singh, A. K. GraphSig: A Scalable Approach to Mining Significant Subgraphs in Large Graph Databases. In Proceedings of the 25th International Conference on Data Engineering; IEEE Computer Society: Washington, DC, 2009; pp 844-855.
    • (2009) Proceedings of the 25th International Conference on Data Engineering , pp. 844-855
    • Ranu, S.1    Singh, A.K.2
  • 32
    • 0027662829 scopus 로고
    • PATTY: A programmable atom type and language for automatic classification of atoms in molecular databases
    • Bush, B. L.; Sheridan, R. P. PATTY: A Programmable Atom Type and Language for Automatic Classification of Atoms in Molecular Databases. J. Chem. Inf. Comput. Sci. 1993, 33, 756-762.
    • (1993) J. Chem. Inf. Comput. Sci. , vol.33 , pp. 756-762
    • Bush, B.L.1    Sheridan, R.P.2
  • 33
    • 0000446756 scopus 로고    scopus 로고
    • A method for visualizing recurrent topological substructures in sets of active molecules
    • Sheridan, R. P.; Miller, M. D. A Method for Visualizing Recurrent Topological Substructures in Sets of Active Molecules. J. Chem. Inf. Comput. Sci. 1998, 38, 915-924.
    • (1998) J. Chem. Inf. Comput. Sci. , vol.38 , pp. 915-924
    • Sheridan, R.P.1    Miller, M.D.2
  • 36
    • 33646270382 scopus 로고    scopus 로고
    • Training similarity measures for specific activities: Application to reduced graphs
    • Birchall, K.; Gillet, V. J.; Harper, G.; Pickett, S. D. Training Similarity Measures for Specific Activities: Application to Reduced Graphs. J. Chem. Inf. Model. 2006, 46, 577-586.
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 577-586
    • Birchall, K.1    Gillet, V.J.2    Harper, G.3    Pickett, S.D.4
  • 37
    • 10044265608 scopus 로고    scopus 로고
    • The reduced graph descriptor in virtual screening and data-driven clustering of high-throughput screening data
    • Harper, G.; Bravi, G.; Pickett, S. D.; Hussain, J.; Green, D. V. S. The Reduced Graph Descriptor in Virtual Screening and Data-Driven Clustering of High-Throughput Screening Data. J. Chem. Inf. Model. 2004, 44, 2145-2156.
    • (2004) J. Chem. Inf. Model. , vol.44 , pp. 2145-2156
    • Harper, G.1    Bravi, G.2    Pickett, S.D.3    Hussain, J.4    Green, D.V.S.5
  • 38
    • 33751391841 scopus 로고
    • Automatic identification of molecular similarity using reduced-graph representation of chemical structure
    • Takahashi, Y.; Sukekawa, M.; Sasaki, S. Automatic Identification of Molecular Similarity Using Reduced-graph Representation of Chemical Structure. J. Chem. Inf. Comput. Sci. 1992, 32, 639-643.
    • (1992) J. Chem. Inf. Comput. Sci. , vol.32 , pp. 639-643
    • Takahashi, Y.1    Sukekawa, M.2    Sasaki, S.3
  • 39
    • 0032149905 scopus 로고    scopus 로고
    • Feature trees: A new molecular similarity measurement based
    • Rarey, M.; Dickson, J. S. Feature Trees: A New Molecular Similarity Measurement Based. J. Comput.-Aided Mol. Des 1998, 12, 471-1190
    • (1998) J. Comput.-Aided Mol. des , vol.12 , pp. 471-1190
    • Rarey, M.1    Dickson, J.S.2
  • 40
    • 34547692851 scopus 로고    scopus 로고
    • SwiFT: An index structure for reduced graph descriptors in virtual screening and clustering
    • Fischer, J. R.; Rarey, M. SwiFT: An Index Structure for Reduced Graph Descriptors in Virtual Screening and Clustering. J. Chem. Inf. Model. 2007, 47, 1341-1353.
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 1341-1353
    • Fischer, J.R.1    Rarey, M.2
  • 41
    • 77955361607 scopus 로고    scopus 로고
    • accessed April 29
    • Wolfram MathWorld. http://mathworld.wolfram.com/BinomialDistribution. html (accessed April 29, 2009).
    • (2009) Wolfram MathWorld.
  • 42
    • 84878102536 scopus 로고    scopus 로고
    • GraphRank: Statistical modeling and mining of significant subgraphs in the feature space
    • IEEE Computer Society: Washington, DC
    • He, H.; Singh, A. K. GraphRank: Statistical Modeling and Mining of Significant Subgraphs in the Feature Space. In Proceedings of the Sixth International Conference on Data Mining; IEEE Computer Society: Washington, DC, 2006; pp 885-890.
    • (2006) Proceedings of the Sixth International Conference on Data Mining , pp. 885-890
    • He, H.1    Singh, A.K.2
  • 44
    • 0036835460 scopus 로고    scopus 로고
    • Integration of virtual and high-throughput screening
    • Bajorath, J. Integration of Virtual and High-throughput Screening. Nat. Rev. Drug. Discovery 2002, 1, 882-894.
    • (2002) Nat. Rev. Drug. Discovery , vol.1 , pp. 882-894
    • Bajorath, J.1
  • 45
    • 5444268169 scopus 로고    scopus 로고
    • Enhancing the effectiveness of virtual screening by fusing nearest neighbor lists: A comparison of similarity coefficients
    • Whittle, M.; Gillet, V. J.; Willett, P.; Alex, A.; Loesel, J. Enhancing the Effectiveness of Virtual Screening by Fusing Nearest Neighbor Lists: A Comparison of Similarity Coefficients. J. Chem. Inf. Comput. Sci. 2004, 44, 1840-1848.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 1840-1848
    • Whittle, M.1    Gillet, V.J.2    Willett, P.3    Alex, A.4    Loesel, J.5
  • 46
    • 5344244908 scopus 로고    scopus 로고
    • Chemical similarity searching
    • Willett, P. Chemical Similarity Searching. J. Chem. Inf. Comput. Sci. 1998, 38, 983-996.
    • (1998) J. Chem. Inf. Comput. Sci. , vol.38 , pp. 983-996
    • Willett, P.1
  • 47
    • 26944486424 scopus 로고    scopus 로고
    • Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity
    • Swamidass, S. J.; Chen, J.; Bruand, J.; Phung, P.; Ralaivola, L.; Baldi, P. Kernels for Small Molecules and the Prediction of Mutagenicity, Toxicity and Anti-cancer Activity. Bioinformatics 2005, 21, 359-368.
    • (2005) Bioinformatics , vol.21 , pp. 359-368
    • Swamidass, S.J.1    Chen, J.2    Bruand, J.3    Phung, P.4    Ralaivola, L.5    Baldi, P.6
  • 50
    • 72949106114 scopus 로고    scopus 로고
    • The PubChem Project (accessed April 29)
    • The PubChem Project. http://pubchem.ncbi.nlm.nih.gov (accessed April 29, 2009).
    • (2009)
  • 51
    • 54249157493 scopus 로고    scopus 로고
    • Distinguishing between bioactive and modeled compound conformations through mining of emerging chemical patterns
    • Auer, J.; Bajorath, J. Distinguishing between Bioactive and Modeled Compound Conformations through Mining of Emerging Chemical Patterns. J. Chem. Inf. Model. 2008, 48, 1747-1753.
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 1747-1753
    • Auer, J.1    Bajorath, J.2
  • 53
    • 34247272948 scopus 로고    scopus 로고
    • Evaluating virtual screening methods: Good and bad metrics for the "early recognition" problem
    • Truchon, J.-F. F.; Bayly, C. I. Evaluating Virtual Screening Methods: Good and Bad Metrics for the "Early Recognition" Problem. J. Chem. Inf. Model. 2007, 47, 488-508.
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 488-508
    • Truchon, J.-F.F.1    Bayly, C.I.2
  • 54
    • 44449118958 scopus 로고    scopus 로고
    • Symyx Software: San Ramon CA
    • MDL Drug Data Report; Symyx Software: San Ramon, CA, 2005.
    • (2005) MDL Drug Data Report
  • 55
    • 72949106348 scopus 로고    scopus 로고
    • accessed April 29
    • DTP-AIDS Antiviral Screen Data. http://dtp.nci.nih.gov/docs/aids/aids- data.html (accessed April 29, 2008).
    • (2008) DTP-AIDS Antiviral Screen Data
  • 56
    • 38149143315 scopus 로고
    • Synthesis of 3′-fluoro-3′-deoxythymidine and Studies of its 18F-radiolabeling, as a Tracer for the NoninvasiveMonitoring of the Biodistribution of Drugs Against AIDS
    • Wilson, I. K.; Chatterjee, S.; Wolf, W. Synthesis of 3′-fluoro- 3′-deoxythymidine and Studies of its 18F-radiolabeling, as a Tracer for the NoninvasiveMonitoring of the Biodistribution of Drugs Against AIDS. J. Fluorine Chem. 1991, 55, 283-289.
    • (1991) J. Fluorine Chem. , vol.55 , pp. 283-289
    • Wilson, I.K.1    Chatterjee, S.2    Wolf, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.