메뉴 건너뛰기




Volumn 467, Issue C, 2009, Pages 335-356

Deterministic and Stochastic Models of Genetic Regulatory Networks

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; CELL CYCLE; CELL DIVISION; CELL FUNCTION; CELL GROWTH; CELL TYPE; ENGINEERING; GENETIC REGULATION; HUMAN; INFORMATION SCIENCE; MATHEMATICAL COMPUTING; NOISE; NONHUMAN; PHENOTYPE; PREDICTION; PRIORITY JOURNAL; PROBABILITY; REVIEW; STEADY STATE; STOCHASTIC MODEL;

EID: 71549141289     PISSN: 00766879     EISSN: None     Source Type: Book Series    
DOI: 10.1016/S0076-6879(09)67013-0     Document Type: Review
Times cited : (40)

References (58)
  • 1
    • 0141811692 scopus 로고    scopus 로고
    • Boolean dynamics with random couplings
    • Kaplan E., Marsden J.E., and Sreenivasan K.R. (Eds), Springer, New York
    • Aldana M., Coppersmith S., and Kadanoff L.P. Boolean dynamics with random couplings. In: Kaplan E., Marsden J.E., and Sreenivasan K.R. (Eds). Perspectives and Problems in Nonlinear Science (2002), Springer, New York 23-89
    • (2002) Perspectives and Problems in Nonlinear Science , pp. 23-89
    • Aldana, M.1    Coppersmith, S.2    Kadanoff, L.P.3
  • 3
    • 46249112705 scopus 로고    scopus 로고
    • Boolean network models of cellular regulation: Prospects and limitations
    • Bornholdt S. Boolean network models of cellular regulation: Prospects and limitations. J. R. Soc. Interface 5 Suppl. 1 (2008) S85-S94
    • (2008) J. R. Soc. Interface , vol.5 , Issue.SUPPL. 1
    • Bornholdt, S.1
  • 4
    • 33947361606 scopus 로고    scopus 로고
    • Superstability of the yeast cell-cycle dynamics: Ensuring causality in the presence of biochemical stochasticity
    • Braunewell S., and Bornholdt S. Superstability of the yeast cell-cycle dynamics: Ensuring causality in the presence of biochemical stochasticity. J. Theor. Biol. 245 4 (2006) 638-643
    • (2006) J. Theor. Biol. , vol.245 , Issue.4 , pp. 638-643
    • Braunewell, S.1    Bornholdt, S.2
  • 5
    • 24344481300 scopus 로고    scopus 로고
    • Steady-state probabilities for attractors in probabilistic Boolean networks
    • Brun M., Dougherty E.R., and Shmulevich I. Steady-state probabilities for attractors in probabilistic Boolean networks. Signal Process. 85 4 (2005) 1993-2013
    • (2005) Signal Process. , vol.85 , Issue.4 , pp. 1993-2013
    • Brun, M.1    Dougherty, E.R.2    Shmulevich, I.3
  • 6
    • 59649085119 scopus 로고    scopus 로고
    • Discrete stochastic simulation methods for chemically reacting systems
    • Cao Y., and Samuels D.C. Discrete stochastic simulation methods for chemically reacting systems. Methods Enzymol. 454 (2009) 115-140
    • (2009) Methods Enzymol. , vol.454 , pp. 115-140
    • Cao, Y.1    Samuels, D.C.2
  • 7
    • 44349162752 scopus 로고    scopus 로고
    • Transcriptome-wide noise controls lineage choice in mammalian progenitor cells
    • Chang H.H., Hemberg M., Barahona M., Ingber D.E., and Huang S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453 7194 (2008) 544-547
    • (2008) Nature , vol.453 , Issue.7194 , pp. 544-547
    • Chang, H.H.1    Hemberg, M.2    Barahona, M.3    Ingber, D.E.4    Huang, S.5
  • 8
    • 18844380444 scopus 로고    scopus 로고
    • Robustness and fragility of Boolean models for genetic regulatory networks
    • Chaves M., Albert R., and Sontag D. Robustness and fragility of Boolean models for genetic regulatory networks. J. Theor. Biol. 235 (2005) 431-449
    • (2005) J. Theor. Biol. , vol.235 , pp. 431-449
    • Chaves, M.1    Albert, R.2    Sontag, D.3
  • 10
    • 55549143637 scopus 로고    scopus 로고
    • The transition from differential equations to Boolean networks: A case study in simplifying a regulatory network model
    • Davidich M., and Bornholdt S. The transition from differential equations to Boolean networks: A case study in simplifying a regulatory network model. J. Theor. Biol. 255 3 (2008) 269-277
    • (2008) J. Theor. Biol. , vol.255 , Issue.3 , pp. 269-277
    • Davidich, M.1    Bornholdt, S.2
  • 11
    • 45849093636 scopus 로고    scopus 로고
    • Boolean network model predicts cell cycle sequence of fission yeast
    • Davidich M.I., and Bornholdt S. Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 3 2 (2008) e1672
    • (2008) PLoS ONE , vol.3 , Issue.2
    • Davidich, M.I.1    Bornholdt, S.2
  • 13
    • 33747874092 scopus 로고    scopus 로고
    • Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle
    • Fauré A., Naldi A., Chaouiya C., and Thieffry D. Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22 14 (2006) e124-e131
    • (2006) Bioinformatics , vol.22 , Issue.14
    • Fauré, A.1    Naldi, A.2    Chaouiya, C.3    Thieffry, D.4
  • 14
    • 0016758861 scopus 로고
    • Classification of biological networks by their qualitative dynamics
    • Glass L. Classification of biological networks by their qualitative dynamics. J. Theor. Biol. 54 (1975) 85-107
    • (1975) J. Theor. Biol. , vol.54 , pp. 85-107
    • Glass, L.1
  • 15
    • 0015609281 scopus 로고
    • The logical analysis of continuous, nonlinear biochemical control networks
    • Glass L., and Kauffman S.A. The logical analysis of continuous, nonlinear biochemical control networks. J. Theor. Biol. 39 (1973) 103-129
    • (1973) J. Theor. Biol. , vol.39 , pp. 103-129
    • Glass, L.1    Kauffman, S.A.2
  • 16
    • 0032825010 scopus 로고    scopus 로고
    • Mathematical simulation and analysis of cellular metabolism and regulation
    • Goryanin I., Hodgman T.C., and Selkov E. Mathematical simulation and analysis of cellular metabolism and regulation. Bioinformatics 15 9 (1999) 749-758
    • (1999) Bioinformatics , vol.15 , Issue.9 , pp. 749-758
    • Goryanin, I.1    Hodgman, T.C.2    Selkov, E.3
  • 17
    • 0032809387 scopus 로고    scopus 로고
    • Gene expression profiling, genetic networks, and cellular states: An integrating concept for tumorigenesis and drug discovery
    • Huang S. Gene expression profiling, genetic networks, and cellular states: An integrating concept for tumorigenesis and drug discovery. J. Mol. Med. 77 6 (1999) 469-480
    • (1999) J. Mol. Med. , vol.77 , Issue.6 , pp. 469-480
    • Huang, S.1
  • 18
    • 0034715919 scopus 로고    scopus 로고
    • Shape-dependent control of cell growth, differentiation, and apoptosis: Switching between attractors in cell regulatory networks
    • Huang S., and Ingber D.E. Shape-dependent control of cell growth, differentiation, and apoptosis: Switching between attractors in cell regulatory networks. Exp. Cell Res. 261 1 (2000) 91-103
    • (2000) Exp. Cell Res. , vol.261 , Issue.1 , pp. 91-103
    • Huang, S.1    Ingber, D.E.2
  • 19
    • 18144408736 scopus 로고    scopus 로고
    • Cell fates as high-dimensional attractor states of a complex gene regulatory network
    • Huang S., Eichler G., Bar-Yam Y., and Ingber D.E. Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys. Rev. Lett. 94 12 (2005) 128701-128704
    • (2005) Phys. Rev. Lett. , vol.94 , Issue.12 , pp. 128701-128704
    • Huang, S.1    Eichler, G.2    Bar-Yam, Y.3    Ingber, D.E.4
  • 20
    • 62549143473 scopus 로고    scopus 로고
    • Logical analysis of the budding yeast cell cycle
    • Irons D.J. Logical analysis of the budding yeast cell cycle. J. Theor. Biol. 257 4 (2009) 543-559
    • (2009) J. Theor. Biol. , vol.257 , Issue.4 , pp. 543-559
    • Irons, D.J.1
  • 22
    • 0014489272 scopus 로고
    • Metabolic stability and epigenesis in randomly constructed genetic nets
    • Kauffman S.A. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22 (1969) 437-467
    • (1969) J. Theor. Biol. , vol.22 , pp. 437-467
    • Kauffman, S.A.1
  • 23
    • 0014671878 scopus 로고
    • Homeostasis and differentiation in random genetic control networks
    • Kauffman S.A. Homeostasis and differentiation in random genetic control networks. Nature 224 (1969) 177-178
    • (1969) Nature , vol.224 , pp. 177-178
    • Kauffman, S.A.1
  • 24
    • 0015993618 scopus 로고
    • The large scale structure and dynamics of genetic control circuits: An ensemble approach
    • Kauffman S.A. The large scale structure and dynamics of genetic control circuits: An ensemble approach. J. Theor. Biol. 44 (1974) 167-190
    • (1974) J. Theor. Biol. , vol.44 , pp. 167-190
    • Kauffman, S.A.1
  • 26
    • 4444311806 scopus 로고    scopus 로고
    • A proposal for using the ensemble approach to understand genetic regulatory networks
    • Kauffman S. A proposal for using the ensemble approach to understand genetic regulatory networks. J. Theor. Biol. 230 4 (2004) 581-590
    • (2004) J. Theor. Biol. , vol.230 , Issue.4 , pp. 581-590
    • Kauffman, S.1
  • 28
    • 32644431906 scopus 로고    scopus 로고
    • Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks
    • Lähdesmäki H., Hautaniemi S., Shmulevich I., and Yli-Harja O. Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks. Signal Process. 86 4 (2006) 814-834
    • (2006) Signal Process. , vol.86 , Issue.4 , pp. 814-834
    • Lähdesmäki, H.1    Hautaniemi, S.2    Shmulevich, I.3    Yli-Harja, O.4
  • 30
    • 1842687878 scopus 로고    scopus 로고
    • The yeast cell-cycle network is robustly designed
    • Li F., Long T., Lu Y., Quyang Q., and Tang C. The yeast cell-cycle network is robustly designed. Proc. Natl. Acad. Sci. USA 101 14 (2004) 4781-4786
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , Issue.14 , pp. 4781-4786
    • Li, F.1    Long, T.2    Lu, Y.3    Quyang, Q.4    Tang, C.5
  • 31
    • 0029981431 scopus 로고    scopus 로고
    • A possible role in chemical carcinogenesis for epigenetic, heritable changes in gene expression
    • MacLeod M.C. A possible role in chemical carcinogenesis for epigenetic, heritable changes in gene expression. Mol. Carcinog. 15 4 (1996) 241-250
    • (1996) Mol. Carcinog. , vol.15 , Issue.4 , pp. 241-250
    • MacLeod, M.C.1
  • 32
    • 33746373126 scopus 로고    scopus 로고
    • Developing Itô stochastic differential equation models for neuronal signal transduction pathways
    • Manninen T., Linne M.L., and Ruohonen K. Developing Itô stochastic differential equation models for neuronal signal transduction pathways. Comput. Biol. Chem. 30 4 (2006) 280-291
    • (2006) Comput. Biol. Chem. , vol.30 , Issue.4 , pp. 280-291
    • Manninen, T.1    Linne, M.L.2    Ruohonen, K.3
  • 33
    • 0027370376 scopus 로고
    • GEPASI: A software package for modelling the dynamics, steady states and control of biochemical and other systems
    • Mendes P. GEPASI: A software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput. Appl. Biosci. 9 5 (1993) 563-571
    • (1993) Comput. Appl. Biosci. , vol.9 , Issue.5 , pp. 563-571
    • Mendes, P.1
  • 36
    • 0035579883 scopus 로고    scopus 로고
    • Mathematical model of the cell division cycle of fission yeast
    • Novak B., Pataki Z., Ciliberto A., and Tyson J.J. Mathematical model of the cell division cycle of fission yeast. Chaos 11 1 (2001) 277-286
    • (2001) Chaos , vol.11 , Issue.1 , pp. 277-286
    • Novak, B.1    Pataki, Z.2    Ciliberto, A.3    Tyson, J.J.4
  • 38
    • 17644396339 scopus 로고    scopus 로고
    • Dizzy: Stochastic simulations of large-scale genetic regulatory networks
    • Ramsey S., Orrell D., and Bolouri H. Dizzy: Stochastic simulations of large-scale genetic regulatory networks. J. Bioinform. Comput. Biol. 3 2 (2005) 1-21
    • (2005) J. Bioinform. Comput. Biol. , vol.3 , Issue.2 , pp. 1-21
    • Ramsey, S.1    Orrell, D.2    Bolouri, H.3
  • 39
    • 0037078982 scopus 로고    scopus 로고
    • Control, exploitation and tolerance of intracellular noise
    • Rao C.V., Wolf D.M., and Arkin A.P. Control, exploitation and tolerance of intracellular noise. Nature 420 6912 (2002) 231-237
    • (2002) Nature , vol.420 , Issue.6912 , pp. 231-237
    • Rao, C.V.1    Wolf, D.M.2    Arkin, A.P.3
  • 40
    • 25444468618 scopus 로고    scopus 로고
    • Noise in gene expression: Origins, consequences, and control
    • Raser J.M., and O'Shea E.K. Noise in gene expression: Origins, consequences, and control. Science 309 5743 (2005) 2010-2013
    • (2005) Science , vol.309 , Issue.5743 , pp. 2010-2013
    • Raser, J.M.1    O'Shea, E.K.2
  • 43
    • 32544443964 scopus 로고    scopus 로고
    • Systems biology toolbox for MATLAB: A computational platform for research in systems biology
    • Schmidt H., and Jirstrand M. Systems biology toolbox for MATLAB: A computational platform for research in systems biology. Bioinformatics 22 4 (2006) 514-515
    • (2006) Bioinformatics , vol.22 , Issue.4 , pp. 514-515
    • Schmidt, H.1    Jirstrand, M.2
  • 44
    • 0035999984 scopus 로고    scopus 로고
    • Binary analysis and optimization-based normalization of gene expression data
    • Shmulevich I., and Zhang W. Binary analysis and optimization-based normalization of gene expression data. Bioinformatics 18 4 (2002) 555-565
    • (2002) Bioinformatics , vol.18 , Issue.4 , pp. 555-565
    • Shmulevich, I.1    Zhang, W.2
  • 45
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
    • Shmulevich I., Dougherty E.R., Kim S., and Zhang W. Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks. Bioinformatics 18 2 (2002) 261-274
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 46
    • 0036772705 scopus 로고    scopus 로고
    • Gene perturbation and intervention in probabilistic Boolean networks
    • Shmulevich I., Dougherty E.R., and Zhang W. Gene perturbation and intervention in probabilistic Boolean networks. Bioinformatics 18 10 (2002) 1319-1331
    • (2002) Bioinformatics , vol.18 , Issue.10 , pp. 1319-1331
    • Shmulevich, I.1    Dougherty, E.R.2    Zhang, W.3
  • 47
    • 0345983657 scopus 로고    scopus 로고
    • From Boolean to probabilistic Boolean networks as models of genetic regulatory networks
    • Shmulevich I., Dougherty E.R., and Zhang W. From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proc. IEEE 90 11 (2002) 1778-1792
    • (2002) Proc. IEEE , vol.90 , Issue.11 , pp. 1778-1792
    • Shmulevich, I.1    Dougherty, E.R.2    Zhang, W.3
  • 49
    • 33845605130 scopus 로고    scopus 로고
    • Mathematical modeling as a tool for investigating cell cycle control networks
    • Sible J.C., and Tyson J.J. Mathematical modeling as a tool for investigating cell cycle control networks. Methods 41 2 (2007) 238-247
    • (2007) Methods , vol.41 , Issue.2 , pp. 238-247
    • Sible, J.C.1    Tyson, J.J.2
  • 50
    • 71549126909 scopus 로고    scopus 로고
    • SimBiology 3.0 Toolbox
    • SimBiology 3.0 Toolbox. http://www.mathworks.com/products/simbiology
  • 51
    • 2342508415 scopus 로고    scopus 로고
    • Effects of stochasticity in models of the cell cycle: From quantized cycle times to noise-induced oscillations
    • Steuer R. Effects of stochasticity in models of the cell cycle: From quantized cycle times to noise-induced oscillations. J. Theor. Biol. 228 3 (2004) 293-301
    • (2004) J. Theor. Biol. , vol.228 , Issue.3 , pp. 293-301
    • Steuer, R.1
  • 52
    • 0036790975 scopus 로고    scopus 로고
    • Intrinsic and extrinsic contributions to stochasticity in gene expression
    • Swain P.S., Elowitz M.B., and Siggia E.D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. USA 99 20 (2002) 12795-12800
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , Issue.20 , pp. 12795-12800
    • Swain, P.S.1    Elowitz, M.B.2    Siggia, E.D.3
  • 53
    • 0015823097 scopus 로고
    • Boolean formalization of genetic control circuits
    • Thomas R. Boolean formalization of genetic control circuits. J. Theor. Biol. 42 (1973) 563-585
    • (1973) J. Theor. Biol. , vol.42 , pp. 563-585
    • Thomas, R.1
  • 55
    • 0032556443 scopus 로고    scopus 로고
    • On the relationship between genomic regulatory element organization and gene regulatory dynamics
    • Wolf D.M., and Eeckman F.H. On the relationship between genomic regulatory element organization and gene regulatory dynamics. J. Theor. Biol. 195 2 (1998) 167-186
    • (1998) J. Theor. Biol. , vol.195 , Issue.2 , pp. 167-186
    • Wolf, D.M.1    Eeckman, F.H.2
  • 56
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • Yu J., Smith V.A., Wang P.P., Hartemink A.J., and Jarvis E.D. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20 18 (2004) 3594-3603
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3594-3603
    • Yu, J.1    Smith, V.A.2    Wang, P.P.3    Hartemink, A.J.4    Jarvis, E.D.5
  • 57
    • 33745736894 scopus 로고    scopus 로고
    • Stochastic model of yeast cell-cycle network
    • Zhang Y., Qian M., Ouyang Q., Deng M., Li F., and Tang C. Stochastic model of yeast cell-cycle network. Physica D 219 1 (2006) 35-39
    • (2006) Physica D , vol.219 , Issue.1 , pp. 35-39
    • Zhang, Y.1    Qian, M.2    Ouyang, Q.3    Deng, M.4    Li, F.5    Tang, C.6
  • 58
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • Zou M., and Conzen S.D. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21 1 (2005) 71-79
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.