메뉴 건너뛰기




Volumn , Issue , 2009, Pages 677-685

An association analysis approach to biclustering

Author keywords

Association analysis; Biclustering; Functional modules; Microarray data; Range support; Real valued data

Indexed keywords

ASSOCIATION ANALYSIS; BICLUSTERING; FUNCTIONAL MODULES; MICROARRAY DATA; RANGE SUPPORT; REAL-VALUED DATA;

EID: 71049189327     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1557019.1557095     Document Type: Conference Paper
Times cited : (50)

References (42)
  • 1
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. VLDB, pages 487-499, 1994.
    • (1994) Proc. VLDB , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 2
    • 0034069495 scopus 로고    scopus 로고
    • Gene Ontology: Tool for the unification of biology
    • M. Ashburner et al. Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1):25-29, 2000.
    • (2000) Nature Genetics , vol.25 , Issue.1 , pp. 25-29
    • Ashburner, M.1
  • 4
    • 0038313118 scopus 로고    scopus 로고
    • Strong-association-rule mining for large-scale gene-expression data analysis: A case study on human sage data
    • C. Becquet et al. Strong-association-rule mining for large-scale gene-expression data analysis: a case study on human sage data. Genome Biology, 3(12):1-16, 2002.
    • (2002) Genome Biology , vol.3 , Issue.12 , pp. 1-16
    • Becquet, C.1
  • 5
    • 0242690489 scopus 로고    scopus 로고
    • Discovering Local Structure in Gene Expression Data: The Order-Preserving Submatrix Problem
    • A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini. Discovering Local Structure in Gene Expression Data: The Order-Preserving Submatrix Problem. Journal of Computational Biology, 10(3-4):373-384, 2003.
    • (2003) Journal of Computational Biology , vol.10 , Issue.3-4 , pp. 373-384
    • Ben-Dor, A.1    Chor, B.2    Karp, R.3    Yakhini, Z.4
  • 6
    • 27644493911 scopus 로고    scopus 로고
    • Efficient Implementations of Apriori and Eclat
    • C. Borgelt. Efficient Implementations of Apriori and Eclat. In Proc. FIMI, 2003.
    • (2003) Proc. FIMI
    • Borgelt, C.1
  • 7
    • 12344269924 scopus 로고    scopus 로고
    • Go::termfinder-open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes
    • E. I. Boyle et al. Go::termfinder-open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes. Bioinformatics, 20(18):3710-3715, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3710-3715
    • Boyle, E.I.1
  • 8
    • 33749545979 scopus 로고    scopus 로고
    • Mining rank-correlated sets of numerical attributes
    • T. Calders, B. Goethals, and S. Jaroszewicz. Mining rank-correlated sets of numerical attributes. In Proc. KDD, pages 96-105, 2006.
    • (2006) Proc. KDD , pp. 96-105
    • Calders, T.1    Goethals, B.2    Jaroszewicz, S.3
  • 10
    • 0034566393 scopus 로고    scopus 로고
    • Biclustering of Expression Data
    • AAAI Press
    • Y. Cheng and G. Church. Biclustering of Expression Data. In Proc. Eighth ISMB Conference, pages 93-103. AAAI Press, 2000.
    • (2000) Proc. Eighth ISMB Conference , pp. 93-103
    • Cheng, Y.1    Church, G.2
  • 11
    • 19544367586 scopus 로고    scopus 로고
    • Mining frequent closed patterns in microarray data
    • G. Cong et al. Mining frequent closed patterns in microarray data. In Proc. ICDM, pages 363-366, 2004.
    • (2004) Proc. ICDM , pp. 363-366
    • Cong, G.1
  • 12
    • 0037245822 scopus 로고    scopus 로고
    • Mining gene expression databases for association rules
    • January
    • C. Creighton and S. Hanash. Mining gene expression databases for association rules. Bioinformatics, 19(1):79-86, January 2003.
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 79-86
    • Creighton, C.1    Hanash, S.2
  • 14
    • 0029694749 scopus 로고    scopus 로고
    • Mining optimized association rules for numeric attributes
    • T. Fukuda et al. Mining optimized association rules for numeric attributes. In Proc. PODS, pages 182-191, 1996.
    • (1996) Proc. PODS , pp. 182-191
    • Fukuda, T.1
  • 15
    • 0034710876 scopus 로고    scopus 로고
    • Coupled two-way clustering analysis of gene microarray data
    • G. Getz, E. Levine, and E. Domany. Coupled two-way clustering analysis of gene microarray data. PNAS, 97(22):12079, 2000.
    • (2000) PNAS , vol.97 , Issue.22 , pp. 12079
    • Getz, G.1    Levine, E.2    Domany, E.3
  • 16
    • 12244313189 scopus 로고    scopus 로고
    • Min-apriori: An algorithm for finding association rules in data with continuous attributes
    • Technical Report 97-068, Dept. of Comp. Sc. and Engg, Univ. of Minnesota
    • E.-H. Han, G. Karypis, and V. Kumar. Min-apriori: An algorithm for finding association rules in data with continuous attributes. Technical Report 97-068, Dept. of Comp. Sc. and Engg., Univ. of Minnesota.
    • Han, E.-H.1    Karypis, G.2    Kumar, V.3
  • 17
    • 34547335088 scopus 로고    scopus 로고
    • Frequent pattern mining: Current status and future directions
    • J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: current status and future directions. DMKD, 15:55-86, 2007.
    • (2007) DMKD , vol.15 , pp. 55-86
    • Han, J.1    Cheng, H.2    Xin, D.3    Yan, X.4
  • 18
    • 33745773300 scopus 로고    scopus 로고
    • Mining quantitative maximal hyperclique patterns: A summary of results
    • Y. Huang, H. Xiong, W.Wu, and S. Y. Sung. Mining quantitative maximal hyperclique patterns: A summary of results. In Proc. PAKDD, pages 552-556, 2006.
    • (2006) Proc. PAKDD , pp. 552-556
    • Huang, Y.1    Xiong, H.2    Wu, W.3    Sung, S.Y.4
  • 19
    • 0034616930 scopus 로고    scopus 로고
    • Functional discovery via a compendium of expression profiles
    • T. R. Hughes et al. Functional discovery via a compendium of expression profiles. Cell, 102(1):109-126, 2000.
    • (2000) Cell , vol.102 , Issue.1 , pp. 109-126
    • Hughes, T.R.1
  • 20
    • 4544339167 scopus 로고    scopus 로고
    • Defining transcription modules using large-scale gene expression data
    • J. Ihmels, S. Bergmann, and N. Barkai. Defining transcription modules using large-scale gene expression data. Bioinformatics, 20(13):1993-2003, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.13 , pp. 1993-2003
    • Ihmels, J.1    Bergmann, S.2    Barkai, N.3
  • 22
    • 3142768191 scopus 로고    scopus 로고
    • Biclustering algorithms for biological data analysis: A survey
    • S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data analysis: a survey. IEEE/ACM TCBB, 1(1):24-45, 2004.
    • (2004) IEEE/ACM TCBB , vol.1 , Issue.1 , pp. 24-45
    • Madeira, S.C.1    Oliveira, A.L.2
  • 23
    • 36249019195 scopus 로고    scopus 로고
    • High confidence rule mining for microarray analysis
    • T. McIntosh and S. Chawla. High confidence rule mining for microarray analysis. IEEE/ACM TCBB, 4(4):611-623, 2007.
    • (2007) IEEE/ACM TCBB , vol.4 , Issue.4 , pp. 611-623
    • McIntosh, T.1    Chawla, S.2
  • 24
    • 0041627879 scopus 로고    scopus 로고
    • Extracting conserved gene expression motifs from gene expression data
    • T. M. Murali and S. Kasif. Extracting conserved gene expression motifs from gene expression data. In Proc. Pac Symp Biocomput., pages 77-88, 2003.
    • (2003) Proc. Pac Symp Biocomput , pp. 77-88
    • Murali, T.M.1    Kasif, S.2
  • 25
    • 33748513704 scopus 로고    scopus 로고
    • Finding function: Evaluation methods for functional genomic data
    • C. L. Myers et al. Finding function: evaluation methods for functional genomic data. BMC Genomics, 7:187, 2006.
    • (2006) BMC Genomics , vol.7 , pp. 187
    • Myers, C.L.1
  • 26
    • 12244284624 scopus 로고    scopus 로고
    • DNA microarray experiments: Biological and technological aspects
    • D. V. Nguyen, A. B. Arpat, N. Wang, and R. J. Carroll. DNA microarray experiments: biological and technological aspects. Biometrics, 58(4):701-717, 2002.
    • (2002) Biometrics , vol.58 , Issue.4 , pp. 701-717
    • Nguyen, D.V.1    Arpat, A.B.2    Wang, N.3    Carroll, R.J.4
  • 27
    • 36849044810 scopus 로고    scopus 로고
    • Computational approaches for protein function prediction: A survey
    • Technical Report 06-028, Dept. of Comp. Sc. and Engg, Univ. of Minnesota
    • G. Pandey, V. Kumar, and M. Steinbach. Computational approaches for protein function prediction: A survey. Technical Report 06-028, Dept. of Comp. Sc. and Engg., Univ. of Minnesota, 2006.
    • (2006)
    • Pandey, G.1    Kumar, V.2    Steinbach, M.3
  • 28
    • 33646137384 scopus 로고    scopus 로고
    • A systematic comparison and evaluation of biclustering methods for gene expression data
    • A. Prelic et al. A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics, 22(9):1122-1129, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.9 , pp. 1122-1129
    • Prelic, A.1
  • 29
    • 53749095489 scopus 로고    scopus 로고
    • Local coherence in genetic interaction patterns reveals prevalent functional versatility
    • S. Pu, K. Ronen, J. Vlasblom, J. Greenblatt, and S. J. Wodak. Local coherence in genetic interaction patterns reveals prevalent functional versatility. Bioinformatics, 24(20):2376-2383, 2008.
    • (2008) Bioinformatics , vol.24 , Issue.20 , pp. 2376-2383
    • Pu, S.1    Ronen, K.2    Vlasblom, J.3    Greenblatt, J.4    Wodak, S.J.5
  • 30
    • 0036184255 scopus 로고    scopus 로고
    • Mining optimized association rules with categorical and numeric attributes
    • R. Rastogi and K. Shim. Mining optimized association rules with categorical and numeric attributes. IEEE TKDE, 14(1):29-50, 2002.
    • (2002) IEEE TKDE , vol.14 , Issue.1 , pp. 29-50
    • Rastogi, R.1    Shim, K.2
  • 31
    • 22044458573 scopus 로고    scopus 로고
    • Finding frequent patterns using length-decreasing support constraints
    • M. Seno and G. Karypis. Finding frequent patterns using length-decreasing support constraints. Data Min. Knowl. Discov., 10(3):197-228, 2005.
    • (2005) Data Min. Knowl. Discov , vol.10 , Issue.3 , pp. 197-228
    • Seno, M.1    Karypis, G.2
  • 32
    • 67049165560 scopus 로고    scopus 로고
    • Bayesian co-clustering
    • H. Shan and A. Banerjee. Bayesian co-clustering. In Proc. IEEE ICDM, pages 530-539, 2008.
    • (2008) Proc. IEEE ICDM , pp. 530-539
    • Shan, H.1    Banerjee, A.2
  • 33
    • 0030157416 scopus 로고    scopus 로고
    • Mining quantitative association rules in large relational tables
    • R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables. In Proc. SIGMOD, pages 1-12, 1996.
    • (1996) Proc. SIGMOD , pp. 1-12
    • Srikant, R.1    Agrawal, R.2
  • 34
    • 12244289922 scopus 로고    scopus 로고
    • Support envelopes: A technique for exploring the structure of association patterns
    • M. Steinbach, P.-N. Tan, and V. Kumar. Support envelopes: A technique for exploring the structure of association patterns. In Proc. ACM SIGKDD, pages 296-305, 2004.
    • (2004) Proc. ACM SIGKDD , pp. 296-305
    • Steinbach, M.1    Tan, P.-N.2    Kumar, V.3
  • 36
    • 1542357674 scopus 로고    scopus 로고
    • Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data
    • A. Tanay et al. Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. PNAS, 101(9):2981-2986, 2004.
    • (2004) PNAS , vol.101 , Issue.9 , pp. 2981-2986
    • Tanay, A.1
  • 37
    • 11244306358 scopus 로고    scopus 로고
    • Discovering statistically significant biclusters in gene expression data
    • A. Tanay, R. Sharan, and R. Shamir. Discovering statistically significant biclusters in gene expression data. Bioinformatics, 18(90001):S136-S144, 2002.
    • (2002) Bioinformatics , vol.18
    • Tanay, A.1    Sharan, R.2    Shamir, R.3
  • 38
    • 34547840224 scopus 로고    scopus 로고
    • Information theory applied to the sparse gene ontology annotation network to predict novel gene function
    • Y. Tao, L. Sam, J. Li, C. Friedman, and Y. A. Lussier. Information theory applied to the sparse gene ontology annotation network to predict novel gene function. Bioinformatics, 23(13):i529-i538, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.13
    • Tao, Y.1    Sam, L.2    Li, J.3    Friedman, C.4    Lussier, Y.A.5
  • 39
    • 33644654860 scopus 로고    scopus 로고
    • Taper: A two-step approach for all-strong-pairs correlation query in large databases
    • H. Xiong, S. Shekhar, P.-N. Tan, and V. Kumar. Taper: A two-step approach for all-strong-pairs correlation query in large databases. IEEE Trans. on Knowl. and Data Eng., 18(4):493-508, 2006.
    • (2006) IEEE Trans. on Knowl. and Data Eng , vol.18 , Issue.4 , pp. 493-508
    • Xiong, H.1    Shekhar, S.2    Tan, P.-N.3    Kumar, V.4
  • 40
    • 20444381674 scopus 로고    scopus 로고
    • Broadly predicting specific gene functions with expression similarity and taxonomy similarity
    • H. Yu, L. Gao, K. Tu, and Z. Guo. Broadly predicting specific gene functions with expression similarity and taxonomy similarity. Gene, 352:75 - 81, 2005.
    • (2005) Gene , vol.352 , pp. 75-81
    • Yu, H.1    Gao, L.2    Tu, K.3    Guo, Z.4
  • 41
    • 0347709684 scopus 로고    scopus 로고
    • Charm: An efficient algorithm for closed itemset mining
    • M. J. Zaki and C.-J. Hsiao. Charm: An efficient algorithm for closed itemset mining. In Proc. SDM, 2002.
    • (2002) Proc. SDM
    • Zaki, M.J.1    Hsiao, C.-J.2
  • 42
    • 34548760779 scopus 로고    scopus 로고
    • Mining colossal frequent patterns by core pattern fusion
    • F. Zhu, X. Yan, J. Han, P. Yu, and H. Cheng. Mining colossal frequent patterns by core pattern fusion. In Proc. IEEE ICDE, pages 706-715, 2007.
    • (2007) Proc. IEEE ICDE , pp. 706-715
    • Zhu, F.1    Yan, X.2    Han, J.3    Yu, P.4    Cheng, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.