메뉴 건너뛰기




Volumn , Issue , 2008, Pages 530-539

Bayesian Co-clustering

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN; CLUSTER STRUCTURE; CO-CLUSTERING; COLUMN CLUSTERS; DATA MATRICES; DATA-MINING TOOLS; DIRICHLET PRIOR; EXPONENTIAL FAMILY DISTRIBUTIONS; LOW DIMENSIONAL; MARKET BASKET ANALYSIS; MATRIX; MISSING VALUES; MODEL OUTPUTS; RECOMMENDATION SYSTEMS; SPARSE MATRICES; VARIATIONAL ALGORITHMS;

EID: 67049165560     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2008.91     Document Type: Conference Paper
Times cited : (156)

References (21)
  • 4
    • 26244461684 scopus 로고    scopus 로고
    • Clustering with Bregman divergences
    • A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh. Clustering with Bregman divergences. JMLR, 6:1705-1749, 2005.
    • (2005) JMLR , vol.6 , pp. 1705-1749
    • Banerjee, A.1    Merugu, S.2    Dhillon, I.3    Ghosh, J.4
  • 5
    • 49749117072 scopus 로고    scopus 로고
    • Latent dirichlet conditional naive- Bayes models
    • A. Banerjee and H. Shan. Latent Dirichlet conditional naive- Bayes models. In ICDM, pages 421-426, 2007.
    • (2007) ICDM , pp. 421-426
    • Banerjee, A.1    Shan, H.2
  • 7
    • 0141607824 scopus 로고    scopus 로고
    • Latent dirichlet allocation
    • D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. JMLR, 3:993-1022, 2003.
    • (2003) JMLR , vol.3 , pp. 993-1022
    • Blei, D.1    Ng, A.2    Jordan, M.3
  • 8
    • 0034566393 scopus 로고    scopus 로고
    • Biclustering of expression data
    • Y. Cheng and G. Church. Biclustering of expression data. In ISMB, pages 93-103, 2000.
    • (2000) ISMB , pp. 93-103
    • Cheng, Y.1    Church, G.2
  • 9
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM algorithm. JRSS, 39(1):1-38, 1977.
    • (1977) JRSS , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 10
    • 77952375075 scopus 로고    scopus 로고
    • Information-theoretic co-clustering
    • I. Dhillon, S. Mallela, and D. Modha. Information-theoretic co-clustering. In KDD, pages 89-98, 2003.
    • (2003) KDD , pp. 89-98
    • Dhillon, I.1    Mallela, S.2    Modha, D.3
  • 12
    • 34548591807 scopus 로고    scopus 로고
    • A scalable collaborative filtering framework based on co-clustering
    • DOI 10.1109/ICDM.2005.14, 1565742, Proceedings - Fifth IEEE International Conference on Data Mining, ICDM 2005
    • T. George and S. Merugu. A scalable collaborative filtering framework based on co-clustering. In ICDM, pages 625- 628, 2005. (Pubitemid 47385756)
    • (2005) Proceedings - IEEE International Conference on Data Mining, ICDM , pp. 625-628
    • George, T.1    Merugu, S.2
  • 13
    • 84927511887 scopus 로고
    • Direct clustering of a data matrix
    • J. Hartigan. Direct clustering of a data matrix. JASA, 67(337):123-129, 1972.
    • (1972) JASA , vol.67 , Issue.337 , pp. 123-129
    • Hartigan, J.1
  • 14
    • 34247470526 scopus 로고    scopus 로고
    • Learning systems of concepts with an infinite relational model
    • C. Kemp, J. Tenenbaum, T. Griffiths, T. Yamada, and N. Ueda. Learning systems of concepts with an infinite relational model. In AAAI, 2006.
    • (2006) AAAI
    • Kemp, C.1    Tenenbaum, J.2    Griffiths, T.3    Yamada, T.4    Ueda, N.5
  • 15
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing. Science, 220(4598):671-680, 1983.
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.2    Vecchi, M.3
  • 16
    • 0037399130 scopus 로고    scopus 로고
    • Spectral biclustering of microarray data: Coclustering genes and conditions
    • DOI 10.1101/gr.648603
    • Y. Kluger, R. Basri, J. Chang, and M. Gerstein. Spectral biclustering of microarray data: Coclustering genes and conditions. Genome Research, 13(4):703-716, 2003. (Pubitemid 36511928)
    • (2003) Genome Research , vol.13 , Issue.4 , pp. 703-716
    • Kluger, Y.1    Basri, R.2    Chang, J.T.3    Gerstein, M.4
  • 18
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. In Learning in Graphical Models, pages 355-368, 1998.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.1    Hinton, G.2
  • 19
    • 0442296603 scopus 로고    scopus 로고
    • Estimation and prediction for stochastic blockstructures
    • K. Nowicki and T. Snijders. Estimation and prediction for stochastic blockstructures. JASA, 96(455):1077-1087, 2001.
    • (2001) JASA , vol.96 , Issue.455 , pp. 1077-1087
    • Nowicki, K.1    Snijders, T.2
  • 20
    • 0021404166 scopus 로고
    • MIXTURE DENSITIES, MAXIMUM LIKELIHOOD AND THE EM ALGORITHM.
    • R. Redner and H.Walker. Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 26(2):195-239, 1984. (Pubitemid 17491604)
    • (1984) SIAM Review , vol.26 , Issue.2 , pp. 195-239
    • Redner Richard, A.1    Walker Homer, F.2
  • 21
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • J. Tenenbaum, V. Silva, and J. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319-2323, 2000. (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.