-
1
-
-
50649109430
-
The combination of multiple classifiers using an evidential reasoning approach
-
Y. Bi, J. Guan, and D. Bell. The combination of multiple classifiers using an evidential reasoning approach. Artificial Intelligence, 172:1731-1751, 2008.
-
(2008)
Artificial Intelligence
, vol.172
, pp. 1731-1751
-
-
Bi, Y.1
Guan, J.2
Bell, D.3
-
3
-
-
54549108812
-
Learning from partially supervised data using mixture models and belief functions
-
E. Côme, L. Oukhellou, T. Denóux, and P. Aknin. Learning from partially supervised data using mixture models and belief functions. Pattern Recognition, 42:334-348, 2009.
-
(2009)
Pattern Recognition
, vol.42
, pp. 334-348
-
-
Côme, E.1
Oukhellou, L.2
Denóux, T.3
Aknin, P.4
-
4
-
-
0029307876
-
A k-nearest neighbor classification rule based on dempster-shafer theory
-
T. Denóux. A k-nearest neighbor classification rule based on dempster-shafer theory. IEEE Transactions on System, Man and Cybernetics, 25:804-813, 1995.
-
(1995)
IEEE Transactions on System, Man and Cybernetics
, vol.25
, pp. 804-813
-
-
Denóux, T.1
-
5
-
-
37149055072
-
Conjunctive and disjunctive combination of belief functions induced by non-distinct bodies of evidence
-
T. Denceux. Conjunctive and disjunctive combination of belief functions induced by non-distinct bodies of evidence. Artificial Intelligence, 172:234-264, 2008.
-
(2008)
Artificial Intelligence
, vol.172
, pp. 234-264
-
-
Denceux, T.1
-
6
-
-
70450239188
-
Induction of decision trees from partially classified data using belief functions
-
Nashville, TN
-
T. Denóux and M. Skarstein-Bjanger. Induction of decision trees from partially classified data using belief functions. In Proceedings of SMC'2000, Nashville, TN, 2000.
-
(2000)
Proceedings of SMC'2000
-
-
Denóux, T.1
Skarstein-Bjanger, M.2
-
7
-
-
85120103060
-
Handling possibilistic labels in pattern classification using evidential reasoning
-
T. Denóux and L. M. Zouhal. Handling possibilistic labels in pattern classification using evidential reasoning. Fuzzy Sets and Systems, 122:47-62, 2001.
-
(2001)
Fuzzy Sets and Systems
, vol.122
, pp. 47-62
-
-
Denóux, T.1
Zouhal, L.M.2
-
8
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification algorithms
-
T. Dietterich. Approximate statistical tests for comparing supervised classification algorithms. Neural Computation, 10:1895-1923, 1998.
-
(1998)
Neural Computation
, vol.10
, pp. 1895-1923
-
-
Dietterich, T.1
-
9
-
-
84962857625
-
The principle of minimum specificity as a basis for evidential reasoning
-
D. Dubois and H. Prade. The principle of minimum specificity as a basis for evidential reasoning. Uncertainty in Knowledge-based Systems, pages 75-84, 1987.
-
(1987)
Uncertainty in Knowledge-based Systems
, pp. 75-84
-
-
Dubois, D.1
Prade, H.2
-
11
-
-
0038476304
-
Resample and combine: An approach to improving uncertainty representation in evidential pattern classification
-
J. François, Y. Grandvalet, T. Denoeux, and J.-M. Roger. Resample and combine: An approach to improving uncertainty representation in evidential pattern classification. Information Fusion, 4:75-85, 2003.
-
(2003)
Information Fusion
, vol.4
, pp. 75-85
-
-
François, J.1
Grandvalet, Y.2
Denoeux, T.3
Roger, J.-M.4
-
12
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
Y. Ereund. Boosting a weak learning algorithm by majority. Information and Computation, 121(2):256-285, 1995.
-
(1995)
Information and Computation
, vol.121
, Issue.2
, pp. 256-285
-
-
Ereund, Y.1
-
13
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Y. Ereund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Ereund, Y.1
Schapire, R.E.2
-
15
-
-
39749138782
-
Refined modeling of sensor reliability in the belief function framework using contextual discounting
-
D. Mercier, B. Quost, and T. Denceux. Refined modeling of sensor reliability in the belief function framework using contextual discounting. Information Fusion, 9:246-258, 2008.
-
(2008)
Information Fusion
, vol.9
, pp. 246-258
-
-
Mercier, D.1
Quost, B.2
Denceux, T.3
-
17
-
-
33846058836
-
Pairwise classifier combination using belief functions
-
April
-
B. Quost, T. Denceux, and M.-H. Masson. Pairwise classifier combination using belief functions. Pattern Recognition Letters, 28:644-653, April 2007.
-
(2007)
Pattern Recognition Letters
, vol.28
, pp. 644-653
-
-
Quost, B.1
Denceux, T.2
Masson, M.-H.3
-
18
-
-
77951862687
-
Adapting a combination rule to non-independent information sources
-
L. Magdalena, M. Ojeda-Aciego, and J. Verdegay, editors, Málaga, Spain
-
B. Quost, T. Denóux, and M.-H. Masson. Adapting a combination rule to non-independent information sources. In L. Magdalena, M. Ojeda-Aciego, and J. Verdegay, editors, Proceedings of the 12th IPMU Conference, pages 448-455, Málaga, Spain, 2008.
-
(2008)
Proceedings of the 12th IPMU Conference
, pp. 448-455
-
-
Quost, B.1
Denóux, T.2
Masson, M.-H.3
-
19
-
-
56749142864
-
Refined classifier combination using belief functions
-
Cologne, Germany
-
B. Quost, M.-H. Masson, and T. Denóux. Refined classifier combination using belief functions. In Proceedings of the 10th International Conference on Information Fusion, pages 776-782, Cologne, Germany, 2008.
-
(2008)
Proceedings of the 10th International Conference on Information Fusion
, pp. 776-782
-
-
Quost, B.1
Masson, M.-H.2
Denóux, T.3
-
20
-
-
38749118634
-
Building ensemble classifiers using belief functions and owa operators
-
M. Reformat and R. Yager. Building ensemble classifiers using belief functions and owa operators. Soft Computing, 12:543-558, 2008.
-
(2008)
Soft Computing
, vol.12
, pp. 543-558
-
-
Reformat, M.1
Yager, R.2
-
22
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
R. Schapire, Y. Ereund, P. Bartlett, and W. Lee. Boosting the margin: a new explanation for the effectiveness of voting methods. Annals of statistics, 26(5):1651-1686, 1998.
-
(1998)
Annals of statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.1
Ereund, Y.2
Bartlett, P.3
Lee, W.4
-
26
-
-
0003106837
-
Belief functions: The disjunctive rule of combination and the generalized bayesian theorem
-
P. Smets. Belief functions: the disjunctive rule of combination and the generalized bayesian theorem. International Journal of Approximate Reasoning, 9:1-35, 1993.
-
(1993)
International Journal of Approximate Reasoning
, vol.9
, pp. 1-35
-
-
Smets, P.1
-
29
-
-
0013322395
-
Handling uncertain labels in multiclass problems using belief decision trees
-
Annecy, France
-
P. Vannoorenberghe and T. Denceux. Handling uncertain labels in multiclass problems using belief decision trees. In Proceedings of the 5th IPMU Conference, pages 1919-1926, Annecy, France, 2002.
-
(2002)
Proceedings of the 5th IPMU Conference
, pp. 1919-1926
-
-
Vannoorenberghe, P.1
Denceux, T.2
|