메뉴 건너뛰기




Volumn 42, Issue 3, 2009, Pages 334-348

Learning from partially supervised data using mixture models and belief functions

Author keywords

Classification; Clustering; Dempster Shafer theory; EM algorithm; Mixture models; Partially supervised learning; Semi supervised learning; Transferable belief model

Indexed keywords

CLASSIFICATION (OF INFORMATION); FORMAL LOGIC; IMAGE SEGMENTATION; MAXIMUM PRINCIPLE; MIXTURES; UNCERTAINTY ANALYSIS;

EID: 54549108812     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2008.07.014     Document Type: Article
Times cited : (118)

References (60)
  • 1
    • 0001230939 scopus 로고
    • A comparison of iterative maximum likelihood estimates of the parameters of a mixture of two normal distributions under three different types of sample
    • Hosmer D.W. A comparison of iterative maximum likelihood estimates of the parameters of a mixture of two normal distributions under three different types of sample. Biometrics 29 (1973) 761-770
    • (1973) Biometrics , vol.29 , pp. 761-770
    • Hosmer, D.W.1
  • 2
    • 0039722383 scopus 로고
    • Estimating the linear discriminant function from initial samples containing a small number of unclassified observations
    • McLachlan G.J. Estimating the linear discriminant function from initial samples containing a small number of unclassified observations. J. Am. Stat. Assoc. 72 358 (1977) 403-406
    • (1977) J. Am. Stat. Assoc. , vol.72 , Issue.358 , pp. 403-406
    • McLachlan, G.J.1
  • 3
    • 33749252873 scopus 로고    scopus 로고
    • Chapelle O., Schölkopf B., and Zien A. (Eds), MIT Press, Cambridge, MA
    • In: Chapelle O., Schölkopf B., and Zien A. (Eds). Semi-Supervised Learning (2006), MIT Press, Cambridge, MA
    • (2006) Semi-Supervised Learning
  • 4
  • 6
    • 1942483137 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machine
    • Morgan Kaufmann, Los Altos, CA
    • Joachims T. Transductive inference for text classification using support vector machine. 16th International Conference on Machine Learning (1999), Morgan Kaufmann, Los Altos, CA 202-209
    • (1999) 16th International Conference on Machine Learning , pp. 202-209
    • Joachims, T.1
  • 7
    • 54549105652 scopus 로고    scopus 로고
    • T.D. Bie, Semi-supervised learning based on kernel methods and graph cut algorithms, Ph.D. Thesis, K.U. Leuven (Leuven, Belgium), Faculty of Engineering, May 2005.
    • T.D. Bie, Semi-supervised learning based on kernel methods and graph cut algorithms, Ph.D. Thesis, K.U. Leuven (Leuven, Belgium), Faculty of Engineering, May 2005.
  • 9
    • 54549112347 scopus 로고    scopus 로고
    • X. Zhu, Z. Ghahramani, Learning from labelled and unlabelled data with label propagation, Technical Report, Carnegie Mellon University, 2002.
    • X. Zhu, Z. Ghahramani, Learning from labelled and unlabelled data with label propagation, Technical Report, Carnegie Mellon University, 2002.
  • 10
    • 0029307876 scopus 로고
    • A k-nearest neighbor classification rule based on Dempster-Shafer theory
    • Denœux T. A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cybernet. 25 5 (1995) 804-813
    • (1995) IEEE Trans. Syst. Man Cybernet. , vol.25 , Issue.5 , pp. 804-813
    • Denœux, T.1
  • 12
    • 26944452249 scopus 로고    scopus 로고
    • Learning from an imprecise teacher: probabilistic and evidential approaches
    • Compiègne, France
    • Ambroise C., Denœux T., Govaert G., and Smets P. Learning from an imprecise teacher: probabilistic and evidential approaches. Proceedings of ASMDA '01 (2001), Compiègne, France 100-105
    • (2001) Proceedings of ASMDA '01 , pp. 100-105
    • Ambroise, C.1    Denœux, T.2    Govaert, G.3    Smets, P.4
  • 16
    • 28044467723 scopus 로고    scopus 로고
    • Semi-supervised learning with an imperfect supervisor
    • Amini R., and Gallinari P. Semi-supervised learning with an imperfect supervisor. Knowl. Inf. Syst. 8 4 (2005) 385-413
    • (2005) Knowl. Inf. Syst. , vol.8 , Issue.4 , pp. 385-413
    • Amini, R.1    Gallinari, P.2
  • 18
    • 34547697572 scopus 로고    scopus 로고
    • Classification in the presence of class noise using a probabilistic kernel fisher method
    • Li Y., Lodeswyk W., De Ridder D., and Reinders M. Classification in the presence of class noise using a probabilistic kernel fisher method. Pattern Recognition 40 (2007) 3349-3357
    • (2007) Pattern Recognition , vol.40 , pp. 3349-3357
    • Li, Y.1    Lodeswyk, W.2    De Ridder, D.3    Reinders, M.4
  • 20
    • 0028406490 scopus 로고
    • The transferable belief model
    • Smets P., and Kennes R. The transferable belief model. Artif. Intell. 66 (1994) 191-243
    • (1994) Artif. Intell. , vol.66 , pp. 191-243
    • Smets, P.1    Kennes, R.2
  • 21
    • 0035899792 scopus 로고    scopus 로고
    • Handling possibilistic labels in pattern classification using evidential reasoning
    • Denœux T., and Zouhal L.M. Handling possibilistic labels in pattern classification using evidential reasoning. Fuzzy Sets Syst. 122 3 (2001) 47-62
    • (2001) Fuzzy Sets Syst. , vol.122 , Issue.3 , pp. 47-62
    • Denœux, T.1    Zouhal, L.M.2
  • 23
    • 36148967330 scopus 로고    scopus 로고
    • Pruning belief decision tree methods in averaging and conjunctive approaches
    • Trabelsi S., Elouedi Z., and Mellouli K. Pruning belief decision tree methods in averaging and conjunctive approaches. Int. J. Approximate Reasoning 46 3 (2007) 568-595
    • (2007) Int. J. Approximate Reasoning , vol.46 , Issue.3 , pp. 568-595
    • Trabelsi, S.1    Elouedi, Z.2    Mellouli, K.3
  • 27
    • 54549111571 scopus 로고    scopus 로고
    • Estimation de modèles de mélanges finis par un algorithm EM crédibiliste
    • Vannoorenberghe P. Estimation de modèles de mélanges finis par un algorithm EM crédibiliste. Trait. du Signal 24 2 (2007) 103-113
    • (2007) Trait. du Signal , vol.24 , Issue.2 , pp. 103-113
    • Vannoorenberghe, P.1
  • 29
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labelled and unlabelled documents using EM
    • Nigam K., McCallum A., Thrun S., and Mitchell T. Text classification from labelled and unlabelled documents using EM. Mach. Learn. 39 2-3 (2000) 103-134
    • (2000) Mach. Learn. , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 31
    • 0000516376 scopus 로고
    • Upper and lower probabilities induced by a multivalued mapping
    • Dempster A.P. Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38 (1967) 325-339
    • (1967) Ann. Math. Stat. , vol.38 , pp. 325-339
    • Dempster, A.P.1
  • 32
    • 84969679653 scopus 로고
    • On the unicity of Dempster's rule of combination
    • Dubois D., and Prade H. On the unicity of Dempster's rule of combination. Int. J. Intell. Syst. 1 (1986) 133-142
    • (1986) Int. J. Intell. Syst. , vol.1 , pp. 133-142
    • Dubois, D.1    Prade, H.2
  • 33
    • 0003106837 scopus 로고
    • Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem
    • Smets P. Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem. Int. J. Approximate Reasoning 9 (1993) 1-35
    • (1993) Int. J. Approximate Reasoning , vol.9 , pp. 1-35
    • Smets, P.1
  • 36
    • 27744441822 scopus 로고    scopus 로고
    • Belief functions on real numbers
    • Smets P. Belief functions on real numbers. Int. J. Approximate Reasoning 40 3 (2005) 181-223
    • (2005) Int. J. Approximate Reasoning , vol.40 , Issue.3 , pp. 181-223
    • Smets, P.1
  • 37
    • 42949178002 scopus 로고    scopus 로고
    • Least committed basic belief density induced by a multivariate Gaussian: formulation with applications
    • Caron F., Ristic B., Duflos E., and Vanheeghe P. Least committed basic belief density induced by a multivariate Gaussian: formulation with applications. Int. J. Approximate Reasoning 48 2 (2008) 419-436
    • (2008) Int. J. Approximate Reasoning , vol.48 , Issue.2 , pp. 419-436
    • Caron, F.1    Ristic, B.2    Duflos, E.3    Vanheeghe, P.4
  • 38
    • 54549101327 scopus 로고    scopus 로고
    • A. Aregui, T. Denœux, Novelty detection in the belief functions framework, in: Proceedings of IPMU '06, vol. 1, Paris, 2006, pp. 412-419.
    • A. Aregui, T. Denœux, Novelty detection in the belief functions framework, in: Proceedings of IPMU '06, vol. 1, Paris, 2006, pp. 412-419.
  • 39
    • 54549102497 scopus 로고    scopus 로고
    • P. Smets, Un modèle mathématico-statistique simulant le processus du diagnostic médical, Ph.D. Thesis, Université Libre de Bruxelles, Brussels, Belgium, 1978 (in French).
    • P. Smets, Un modèle mathématico-statistique simulant le processus du diagnostic médical, Ph.D. Thesis, Université Libre de Bruxelles, Brussels, Belgium, 1978 (in French).
  • 40
    • 3142737308 scopus 로고    scopus 로고
    • Target identification based on the transferable belief model interpretation of Dempster-Shafer model
    • Delmotte F., and Smets P. Target identification based on the transferable belief model interpretation of Dempster-Shafer model. IEEE Trans. Syst. Man Cybernet. A 34 4 (2004) 457-471
    • (2004) IEEE Trans. Syst. Man Cybernet. A , vol.34 , Issue.4 , pp. 457-471
    • Delmotte, F.1    Smets, P.2
  • 41
    • 33947108026 scopus 로고    scopus 로고
    • Classification using belief functions: the relationship between the case-based and model-based approaches
    • Denœux T., and Smets P. Classification using belief functions: the relationship between the case-based and model-based approaches. IEEE Trans. Syst. Man Cybernet. B 36 6 (2006) 1395-1406
    • (2006) IEEE Trans. Syst. Man Cybernet. B , vol.36 , Issue.6 , pp. 1395-1406
    • Denœux, T.1    Smets, P.2
  • 42
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster A.P., Laird N.M., and Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39 (1977) 1-38
    • (1977) J. R. Stat. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 44
    • 0011008412 scopus 로고
    • Possibilistic inference from statistical data
    • Universidad Politecnica de Las Palmas
    • Smets P. Possibilistic inference from statistical data. 2nd World Conference on Mathematics at the Service of Man (1982), Universidad Politecnica de Las Palmas 611-613
    • (1982) 2nd World Conference on Mathematics at the Service of Man , pp. 611-613
    • Smets, P.1
  • 45
    • 0033475167 scopus 로고    scopus 로고
    • Upper probabilities based on the likelihood function
    • Walley P., and Moral S. Upper probabilities based on the likelihood function. J. R. Stat. Soc. B 161 (1999) 831-847
    • (1999) J. R. Stat. Soc. B , vol.161 , pp. 831-847
    • Walley, P.1    Moral, S.2
  • 46
    • 18944374520 scopus 로고    scopus 로고
    • Decision making on the sole basis of statistical likelihood
    • Shenoy P.P., and Giang P.H. Decision making on the sole basis of statistical likelihood. Artif. Intell. 165 2 (2005) 137-163
    • (2005) Artif. Intell. , vol.165 , Issue.2 , pp. 137-163
    • Shenoy, P.P.1    Giang, P.H.2
  • 47
    • 0000285691 scopus 로고    scopus 로고
    • Numerical representation of uncertainty
    • Gabbay D.M., and Smets P. (Eds), Kluwer Academic Publishers, Dordrecht
    • Smets P. Numerical representation of uncertainty. In: Gabbay D.M., and Smets P. (Eds). Handbook of Defeasible Reasoning and Uncertainty Management Systems vol. 3 (1998), Kluwer Academic Publishers, Dordrecht 265-309
    • (1998) Handbook of Defeasible Reasoning and Uncertainty Management Systems , vol.3 , pp. 265-309
    • Smets, P.1
  • 49
    • 33644864393 scopus 로고    scopus 로고
    • On the plausibility transformation method for translating belief function models to probability models
    • Cobb B.R., and Shenoy P.P. On the plausibility transformation method for translating belief function models to probability models. Int. J. Approximate Reasoning 41 3 (2006) 314-330
    • (2006) Int. J. Approximate Reasoning , vol.41 , Issue.3 , pp. 314-330
    • Cobb, B.R.1    Shenoy, P.P.2
  • 50
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield J., and Raftery A. Model-based Gaussian and non-Gaussian clustering. Biometrics 49 (1993) 803-821
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.1    Raftery, A.2
  • 51
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • Celeux G., and Govaert G. Gaussian parsimonious clustering models. Pattern Recognition 28 5 (1995) 781-793
    • (1995) Pattern Recognition , vol.28 , Issue.5 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 54
    • 36849029089 scopus 로고    scopus 로고
    • Bayesian regularization for normal mixture estimation and model-based clustering
    • http://dx.doi.org/10.1007/s00357-007-0004-5
    • Fraley C., and Raftery A. Bayesian regularization for normal mixture estimation and model-based clustering. J. Classification 24 2 (2007) 155-181. http://dx.doi.org/10.1007/s00357-007-0004-5 http://dx.doi.org/10.1007/s00357-007-0004-5
    • (2007) J. Classification , vol.24 , Issue.2 , pp. 155-181
    • Fraley, C.1    Raftery, A.2
  • 57
    • 38249034837 scopus 로고
    • Uniqueness of information measure in the theory of evidence
    • Ramer A. Uniqueness of information measure in the theory of evidence. Fuzzy Sets Syst. 24 (1987) 183-196
    • (1987) Fuzzy Sets Syst. , vol.24 , pp. 183-196
    • Ramer, A.1
  • 58
    • 0000734588 scopus 로고
    • Normal discrimination with unclassified observations
    • O'Neill T. Normal discrimination with unclassified observations. J. Am. Stat. Assoc. 73 364 (1978) 821-826
    • (1978) J. Am. Stat. Assoc. , vol.73 , Issue.364 , pp. 821-826
    • O'Neill, T.1
  • 59
    • 54549108128 scopus 로고    scopus 로고
    • P.M. Murphy, D.W. Aha, UCI repository of machine learning databases (machine-readable data repository), University of California, Department of Information and Computer Science, Irvine, CA, 1994.
    • P.M. Murphy, D.W. Aha, UCI repository of machine learning databases (machine-readable data repository), University of California, Department of Information and Computer Science, Irvine, CA, 1994.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.