메뉴 건너뛰기




Volumn 12, Issue 6, 2008, Pages 543-558

Building ensemble classifiers using belief functions and OWA operators

Author keywords

Belief functions; Dempster Shafer evidence theory; Ensemble systems; Ordered weighted averaging operator; Rule based models

Indexed keywords

BAYESIAN NETWORKS; COMPUTER SIMULATION; KNOWLEDGE BASED SYSTEMS;

EID: 38749118634     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-007-0227-2     Document Type: Article
Times cited : (35)

References (47)
  • 1
    • 0038809899 scopus 로고    scopus 로고
    • Use of Dempster-Shafer theory to combine classifiers which use different class boundaries
    • Ahmadzadeh MR, Petrou M (2003) Use of Dempster-Shafer theory to combine classifiers which use different class boundaries. Pattern Anal Appl 6:41-46
    • (2003) Pattern Anal Appl , vol.6 , pp. 41-46
    • Ahmadzadeh, M.R.1    Petrou, M.2
  • 2
    • 4344710606 scopus 로고    scopus 로고
    • A new technique for combining multiple classifiers using the Dempster-Shafer theory of evidence
    • Al-Ani A, Deriche M (2002) A new technique for combining multiple classifiers using the Dempster-Shafer theory of evidence. J Artif Intell Res 17:333-361
    • (2002) J Artif Intell Res , vol.17 , pp. 333-361
    • Al-Ani, A.1    Deriche, M.2
  • 4
    • 0030235637 scopus 로고    scopus 로고
    • Error reduction through learning multiple descriptions
    • Ali K, Pazzani M (1996) Error reduction through learning multiple descriptions. Mach Learn 24:173-202
    • (1996) Mach Learn , vol.24 , pp. 173-202
    • Ali, K.1    Pazzani, M.2
  • 5
    • 28344443217 scopus 로고    scopus 로고
    • A Dempster-Shafer theoretic framework for boosting based ensemble design
    • Altincay H (2005) A Dempster-Shafer theoretic framework for boosting based ensemble design. Pattern Anal Appl 8:287-302
    • (2005) Pattern Anal Appl , vol.8 , pp. 287-302
    • Altincay, H.1
  • 6
    • 33745698173 scopus 로고    scopus 로고
    • On the independence requirement in Dempster- Shafer theory for combining classifiers providing statistical evidence
    • Altincay H (2006) On the independence requirement in Dempster- Shafer theory for combining classifiers providing statistical evidence. Appl Intell 25:73-90
    • (2006) Appl Intell , vol.25 , pp. 73-90
    • Altincay, H.1
  • 7
    • 18544396408 scopus 로고    scopus 로고
    • Speaker identification by combining multiple classifiers using Dempster-Shafer theory of evidence
    • Altincay H, Demirekler M (2003) Speaker identification by combining multiple classifiers using Dempster-Shafer theory of evidence. Speech Commun 41:531-547
    • (2003) Speech Commun , vol.41 , pp. 531-547
    • Altincay, H.1    Demirekler, M.2
  • 8
    • 0032650531 scopus 로고    scopus 로고
    • Fuzzy Dempster-Shafer reasoning for rule-based classifiers
    • Binaghi E, Madella P (1999) Fuzzy Dempster-Shafer reasoning for rule-based classifiers. Int J Intell Syst 14:559-583
    • (1999) Int J Intell Syst , vol.14 , pp. 559-583
    • Binaghi, E.1    Madella, P.2
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24:123-140
    • (1996) Mach Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 10
    • 0003637516 scopus 로고
    • A theory of learning classification rules
    • Ph.D. Dissertation, University of Technology, Sydney, Australia
    • Buntine W (1990) A theory of learning classification rules. Ph.D. Dissertation, University of Technology, Sydney, Australia
    • (1990)
    • Buntine, W.1
  • 12
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13:21-27
    • (1967) IEEE Trans Inf Theory , vol.13 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 13
    • 38849190743 scopus 로고    scopus 로고
    • Classic works on the Dempster- Shafer theory of belief functions
    • Springer, Heidelberg
    • Dempster AP, Yager RR, Liu L (2007) Classic works on the Dempster- Shafer theory of belief functions. Studies in fuzziness & soft computing, vol. 219. Springer, Heidelberg
    • (2007) Studies in Fuzziness & Soft Computing , vol.219
    • Dempster, A.P.1    Yager, R.R.2    Liu, L.3
  • 14
    • 0029307876 scopus 로고
    • A k-nearest neighbor classification rule based on Dempster-Shafer theory
    • Denoeux T (1995) A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans Syst Man Cybern 25(5):804-813
    • (1995) IEEE Trans Syst Man Cybern , vol.25 , Issue.5 , pp. 804-813
    • Denoeux, T.1
  • 15
    • 0031189743 scopus 로고    scopus 로고
    • Analysis of evidence-theoretic decision rules for pattern classification
    • Denoeux T (1997) Analysis of evidence-theoretic decision rules for pattern classification. Pattern Recognit 30(7):1095-1107
    • (1997) Pattern Recognit , vol.30 , Issue.7 , pp. 1095-1107
    • Denoeux, T.1
  • 16
    • 0033902309 scopus 로고    scopus 로고
    • A neural network Classifier Based on Dempster-Shafer Theory
    • Denoeux T (2000) A neural network Classifier Based on Dempster-Shafer Theory. IEEE Trans Syst Man Cybern A 30(2):131-150
    • (2000) IEEE Trans Syst Man Cybern A , vol.30 , Issue.2 , pp. 131-150
    • Denoeux, T.1
  • 19
    • 15744363435 scopus 로고    scopus 로고
    • Prentice Hall, Upper Saddle River
    • Dunham M (2003) Data mining. Prentice Hall, Upper Saddle River
    • (2003) Data Mining
    • Dunham, M.1
  • 25
    • 84951625640 scopus 로고
    • Learning as optimization: Stochastic generation of multiple knowledge
    • In: Aberdeen, UK, Morgan Kaufmann
    • Kononenko M, Kovacic M (1992) Learning as optimization: Stochastic generation of multiple knowledge. In: Proceedings of 9th international workshop on machine learning, Aberdeen, UK, Morgan Kaufmann, pp 257-262
    • (1992) Proceedings of 9th International Workshop on Machine Learning , pp. 257-262
    • Kononenko, M.1    Kovacic, M.2
  • 26
    • 0348238050 scopus 로고    scopus 로고
    • Dempster combination rule with boolean-like processed belief functions
    • Kramosil I (2001) Dempster combination rule with boolean-like processed belief functions. Int J Uncertain Fuzziness Knowl Based Syst 9(1):105-121
    • (2001) Int J Uncertain Fuzziness Knowl Based Syst , vol.9 , Issue.1 , pp. 105-121
    • Kramosil, I.1
  • 29
    • 33744772630 scopus 로고    scopus 로고
    • Land cover classification using fuzzy rules and aggregation of contextual information through evidence theory
    • Laha A, Pal NR, Das J (2006) Land cover classification using fuzzy rules and aggregation of contextual information through evidence theory. IEEE Trans Geosci Remote Sens 44(6):1633-1641
    • (2006) IEEE Trans Geosci Remote Sens , vol.44 , Issue.6 , pp. 1633-1641
    • Laha, A.1    Pal, N.R.2    Das, J.3
  • 31
    • 85012722936 scopus 로고
    • Combining the classification results of independent classifiers based on the Dempster-Shafer theory of evidence
    • In: Gelsema E, Kanal L (eds)
    • Mandler E, Schurmann J (1988) Combining the classification results of independent classifiers based on the Dempster-Shafer theory of evidence. In: Gelsema E, Kanal L (eds) Pattern recognition and artificial intelligence, pp 381-393
    • (1988) Pattern Recognition and Artificial Intelligence , pp. 381-393
    • Mandler, E.1    Schurmann, J.2
  • 33
    • 27844451094 scopus 로고    scopus 로고
    • A fuzzy-based meta-model system for reasoning about the number of software defects
    • Reformat M (2005) A fuzzy-based meta-model system for reasoning about the number of software defects. Int J Intell Syst 20:1093-1115
    • (2005) Int J Intell Syst , vol.20 , pp. 1093-1115
    • Reformat, M.1
  • 34
    • 0027961797 scopus 로고
    • Combining the results of several neural network classifiers
    • Rogova G (1994) Combining the results of several neural network classifiers. Neural Netw 7:777-781
    • (1994) Neural Netw , vol.7 , pp. 777-781
    • Rogova, G.1
  • 35
    • 38749140705 scopus 로고    scopus 로고
    • A gentle introduction to fusion of multiple pattern classifiers, in data fusion for situation monitoring, incident detection, alert and response management
    • In: Shahbazian E, Rogova G, Valin P (eds) Amsterdam
    • Roli F (2006) A gentle introduction to fusion of multiple pattern classifiers, in data fusion for situation monitoring, incident detection, alert and response management. In: Shahbazian E, Rogova G, Valin P (eds) IOS NATO Publication, Amsterdam, pp 23-34
    • (2006) IOS NATO Publication , pp. 23-34
    • Roli, F.1
  • 37
    • 0002286737 scopus 로고
    • Belief functions
    • In: Smets Ph, Mamdani A, Dubois D, Prade H (eds) Academic, London
    • Smets Ph (1988) Belief functions. In: Smets Ph, Mamdani A, Dubois D, Prade H (eds) Non standard logics for automated reasoning. Academic, London, pp 253-286
    • (1988) Non Standard Logics for Automated Reasoning , pp. 253-286
    • Smets, Ph.1
  • 38
    • 0028406490 scopus 로고
    • The transferable belief model
    • Smets Ph, Kennes R (1994) The transferable belief model. Artif Intell 66:191-234
    • (1994) Artif Intell , vol.66 , pp. 191-234
    • Smets, Ph.1    Kennes, R.2
  • 41
    • 0027676898 scopus 로고
    • Families of OWA operators
    • Yager RR (1993) Families of OWA operators. Fuzzy Sets Syst 59:125-148
    • (1993) Fuzzy Sets Syst , vol.59 , pp. 125-148
    • Yager, R.R.1
  • 42
    • 0029778561 scopus 로고    scopus 로고
    • Quantifier guided aggregation using OWA operators
    • Yager RR (1996) Quantifier guided aggregation using OWA operators. Int J Intell Syst 11:49-73
    • (1996) Int J Intell Syst , vol.11 , pp. 49-73
    • Yager, R.R.1
  • 43
    • 0023855863 scopus 로고
    • On ordered weighted averaging aggregation operators in multi-criteria decision making
    • Yager RR (1988) On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans Syst Man Cybern 18:183-190
    • (1988) IEEE Trans Syst Man Cybern , vol.18 , pp. 183-190
    • Yager, R.R.1
  • 44
    • 17644374102 scopus 로고    scopus 로고
    • Extending multicriteria decision making by mixing t-norms and OWA operators
    • Yager RR (2005) Extending multicriteria decision making by mixing t-norms and OWA operators. Int J Intell Syst 20:453-474
    • (2005) Int J Intell Syst , vol.20 , pp. 453-474
    • Yager, R.R.1
  • 45
    • 27944494029 scopus 로고    scopus 로고
    • Generalized naive Bayesian modeling
    • Yager RR (2006) Generalized naive Bayesian modeling. Inf Sci 176:577-588
    • (2006) Inf Sci , vol.176 , pp. 577-588
    • Yager, R.R.1
  • 46
    • 49049122961 scopus 로고
    • A computational approach to fuzzy quantifiers in natural languages
    • Zadeh LA (1983) A computational approach to fuzzy quantifiers in natural languages. Comput Math Appl 9:149-184
    • (1983) Comput Math Appl , vol.9 , pp. 149-184
    • Zadeh, L.A.1
  • 47
    • 0032072012 scopus 로고    scopus 로고
    • An evidence-theoretic k-NN rule with parameter optimization
    • Zouhal LM, Denoeux T (1998) An evidence-theoretic k-NN rule with parameter optimization. IEEE Trans Syst Man Cybern C 28(2):263-271
    • (1998) IEEE Trans Syst Man Cybern C , vol.28 , Issue.2 , pp. 263-271
    • Zouhal, L.M.1    Denoeux, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.