메뉴 건너뛰기




Volumn , Issue , 2009, Pages 340-346

Partial logistic artificial neural networks (PLANN) for flexible modeling of censored survival data

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CUMULATIVE INCIDENCE; DATA REPRESENTATIONS; DISEASE DYNAMICS; ERROR FUNCTION; FEED-FORWARD ARTIFICIAL NEURAL NETWORKS; GENERALIZED LINEAR MODEL; HAZARD FUNCTION; NON-LINEAR; NONLINEAR EFFECT; PREDICTING OUTCOMES; STATISTICAL ANALYSIS; SURVIVAL DATA; SURVIVAL FUNCTION; SURVIVAL TIME;

EID: 70449409240     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2009.5178824     Document Type: Conference Paper
Times cited : (5)

References (27)
  • 1
    • 0028788276 scopus 로고
    • Application of artificial neural networks to clinical medicine
    • W. G. Baxt, "Application of artificial neural networks to clinical medicine", Lancet, vol. 346, pp. 1135-1138, 1995.
    • (1995) Lancet , vol.346 , pp. 1135-1138
    • Baxt, W.G.1
  • 2
    • 0011827330 scopus 로고    scopus 로고
    • Neural networks as statistical methods in survival analysis
    • R. Dybowski and V. Gant Eds. Cambridge University Press, Cambridge, UK
    • B. D. Ripley, R. M. Ripley, "Neural networks as statistical methods in survival analysis", Artificial Neural Networks: Prospects for Medicine, R. Dybowski and V. Gant Eds. Cambridge University Press, Cambridge, UK, 1998.
    • (1998) Artificial Neural Networks: Prospects for Medicine
    • Ripley, B.D.1    Ripley, R.M.2
  • 3
    • 0034728368 scopus 로고    scopus 로고
    • On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology
    • G. Schwarzer, W. Vach, and M. Schumacher, "On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology", Statistics in Medicine, vol. 19, pp. 541-561, 2000.
    • (2000) Statistics in Medicine , vol.19 , pp. 541-561
    • Schwarzer, G.1    Vach, W.2    Schumacher, M.3
  • 4
    • 0038162240 scopus 로고    scopus 로고
    • A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer
    • P. J. Lisboa, H. Wong, P. Harris, and R. Swindell, "A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer", Artif Intell Med,. Vol. 28, pp. 1-25, 2003.
    • (2003) Artif Intell Med , vol.28 , pp. 1-25
    • Lisboa, P.J.1    Wong, H.2    Harris, P.3    Swindell, R.4
  • 6
    • 0028855843 scopus 로고
    • A neural network model for survival data
    • D. Faraggi, R. Simon, "A neural network model for survival data", Statistics in Medicine, vol. 14, pp. 73-82, 1995.
    • (1995) Statistics in Medicine , vol.14 , pp. 73-82
    • Faraggi, D.1    Simon, R.2
  • 10
    • 84950442000 scopus 로고
    • Logistic regression, survival analysis, and the Kaplan- Meier curve
    • B. Efron, "Logistic regression, survival analysis, and the Kaplan- Meier curve" Journal of the American Statistical Association, vol. 83, pp. 414-425, 1988.
    • (1988) Journal of the American Statistical Association , vol.83 , pp. 414-425
    • Efron, B.1
  • 11
    • 0031921607 scopus 로고    scopus 로고
    • Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach
    • E. Biganzoli, P. Boracchi, L. Mariani, and E. Marubini, "Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach", Statistics in Medicine, vol. 17, pp. 1169-1186, 1998.
    • (1998) Statistics in Medicine , vol.17 , pp. 1169-1186
    • Biganzoli, E.1    Boracchi, P.2    Mariani, L.3    Marubini, E.4
  • 12
    • 0036199021 scopus 로고    scopus 로고
    • A general framework for neural network models on censored survival data
    • E. Biganzoli, P. Boracchi, and E. Marubini, "A general framework for neural network models on censored survival data", Neural Networks, vol. 15, pp. 209-218, 2002.
    • (2002) Neural Networks , vol.15 , pp. 209-218
    • Biganzoli, E.1    Boracchi, P.2    Marubini, E.3
  • 13
    • 0035977415 scopus 로고    scopus 로고
    • Modelling cause-specific hazards with radial basis function artificial neural networks: Application to 2233 breast cancer patients
    • P. Boracchi, E. Biganzoli, and E. Marubini, "Modelling cause-specific hazards with radial basis function artificial neural networks: application to 2233 breast cancer patients", Statistics in Medicine, vol. 20, pp. 3677-3694, 2001.
    • (2001) Statistics in Medicine , vol.20 , pp. 3677-3694
    • Boracchi, P.1    Biganzoli, E.2    Marubini, E.3
  • 14
    • 33744547243 scopus 로고    scopus 로고
    • Artificial neural network models for the joint modeling of discrete cause specific hazards
    • E. Biganzoli, P. Boracchi, F. Ambrogi, E. Marubini, "Artificial neural network models for the joint modeling of discrete cause specific hazards". Artificial Intelligence in Medicine, vol. 37, pp. 119-130, 2006.
    • (2006) Artificial Intelligence in Medicine , vol.37 , pp. 119-130
    • Biganzoli, E.1    Boracchi, P.2    Ambrogi, F.3    Marubini, E.4
  • 16
    • 0021639930 scopus 로고
    • Covariate analysis of competing-risks data with loglinear models
    • M. G. Larson, "Covariate analysis of competing-risks data with loglinear models", Biometrics, vol. 40, pp. 459-468, 1984.
    • (1984) Biometrics , vol.40 , pp. 459-468
    • Larson, M.G.1
  • 17
    • 0023430256 scopus 로고
    • A method of analysis taking into account competing events: Application to the study of digestive complications following irradiation for cervical cancer
    • A. Kramar, M. H. Pejovic, and D. Chassagne, "A method of analysis taking into account competing events: application to the study of digestive complications following irradiation for cervical cancer", Statistics in Medicine, vol. 6, pp. 785-794, 1987.
    • (1987) Statistics in Medicine , vol.6 , pp. 785-794
    • Kramar, A.1    Pejovic, M.H.2    Chassagne, D.3
  • 20
    • 0000336139 scopus 로고
    • Regression models and life-tables (with discussion)
    • D. R. Cox, "Regression models and life-tables (with discussion) ", Journal of the Royal Statistical Society Series B, vol. 34, pp. 187-220, 1972.
    • (1972) Journal of the Royal Statistical Society Series B , vol.34 , pp. 187-220
    • Cox, D.R.1
  • 22
    • 0142216643 scopus 로고    scopus 로고
    • Prognosis in node-negative primary breast cancer: A neural network analysis of risk profiles using routinely assessed factors
    • E. Biganzoli, P. Boracchi, D. Coradini, M. G. Daidone, and E. Marubini, "Prognosis in node-negative primary breast cancer: a neural network analysis of risk profiles using routinely assessed factors", Ann. Oncol., vol. 14, pp. 1484-93, 2003.
    • (2003) Ann. Oncol , vol.14 , pp. 1484-1493
    • Biganzoli, E.1    Boracchi, P.2    Coradini, D.3    Daidone, M.G.4    Marubini, E.5
  • 23
    • 0036799010 scopus 로고    scopus 로고
    • An information approach to regularization parameter selection under model misspecification
    • A. M. Urmanov, A. V. Gribok, J. W. Hines, R. E. Uhrig, "An information approach to regularization parameter selection under model misspecification" Inverse Problems, vol. 18, pp. 1207-1228, 2002.
    • (2002) Inverse Problems , vol.18 , pp. 1207-1228
    • Urmanov, A.M.1    Gribok, A.V.2    Hines, J.W.3    Uhrig, R.E.4
  • 25
    • 34548266303 scopus 로고    scopus 로고
    • Selection of artificial neural network models for survival analysis with Genetic Algorithms
    • F. Ambrogi, N. Lama, P. Boracchi, E. Biganzoli, "Selection of artificial neural network models for survival analysis with Genetic Algorithms", Comp Stat & Data Analysis, vol. 52, pp. 30-42, 1996.
    • (1996) Comp Stat & Data Analysis , vol.52 , pp. 30-42
    • Ambrogi, F.1    Lama, N.2    Boracchi, P.3    Biganzoli, E.4
  • 26
    • 3843114803 scopus 로고    scopus 로고
    • E. Biganzoli, P. Boracchi, P., Old and new markers for breast cancer prognosis: the need for integrated research on quantitative issues, Eur J Cancer, 40, pp. 1803- 1806, 2004.
    • E. Biganzoli, P. Boracchi, P., "Old and new markers for breast cancer prognosis: the need for integrated research on quantitative issues", Eur J Cancer, vol. 40, pp. 1803- 1806, 2004.
  • 27


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.