메뉴 건너뛰기




Volumn 52, Issue 1, 2007, Pages 30-42

Selection of artificial neural network models for survival analysis with Genetic Algorithms

Author keywords

Competing risks; Genetic Algorithms; Neural networks; Regularization

Indexed keywords

BIOMEDICAL ENGINEERING; GENETIC ALGORITHMS; MULTILAYER NEURAL NETWORKS; RISK ANALYSIS; STATISTICAL METHODS;

EID: 34548266303     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2007.05.001     Document Type: Article
Times cited : (13)

References (38)
  • 1
    • 34548293958 scopus 로고    scopus 로고
    • Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Csaki, F. (Eds.), Second International Symposium on Information Theory.
  • 3
    • 0031921607 scopus 로고    scopus 로고
    • Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach
    • Biganzoli E., Boracchi P., Mariani L., and Marubini E. Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. Statist. Med. 17 10 (1998) 1169-1186
    • (1998) Statist. Med. , vol.17 , Issue.10 , pp. 1169-1186
    • Biganzoli, E.1    Boracchi, P.2    Mariani, L.3    Marubini, E.4
  • 4
    • 0036199021 scopus 로고    scopus 로고
    • A general framework for neural network models on censored survival data
    • Biganzoli E., Boracchi P., and Marubini E. A general framework for neural network models on censored survival data. Neural Networks 15 2 (2002) 209-218
    • (2002) Neural Networks , vol.15 , Issue.2 , pp. 209-218
    • Biganzoli, E.1    Boracchi, P.2    Marubini, E.3
  • 5
    • 0142216643 scopus 로고    scopus 로고
    • Prognosis in node-negative primary breast cancer: a neural network analysis of risk profiles using routinely assessed factors
    • Biganzoli E., Boracchi P., Coradini D., Daidone M.G., and Marubini E. Prognosis in node-negative primary breast cancer: a neural network analysis of risk profiles using routinely assessed factors. Ann. Oncol. 14 (2003) 1484-1493
    • (2003) Ann. Oncol. , vol.14 , pp. 1484-1493
    • Biganzoli, E.1    Boracchi, P.2    Coradini, D.3    Daidone, M.G.4    Marubini, E.5
  • 6
    • 33744547243 scopus 로고    scopus 로고
    • Artificial neural network models for the joint modeling of discrete cause specific hazards
    • Biganzoli E., Boracchi P., Ambrogi F., and Marubini E. Artificial neural network models for the joint modeling of discrete cause specific hazards. Artificial Intelligence Med. 37 (2006) 119-130
    • (2006) Artificial Intelligence Med. , vol.37 , pp. 119-130
    • Biganzoli, E.1    Boracchi, P.2    Ambrogi, F.3    Marubini, E.4
  • 8
    • 34250108028 scopus 로고
    • Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions
    • Bozdogan H. Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52 3 (1987) 345-370
    • (1987) Psychometrika , vol.52 , Issue.3 , pp. 345-370
    • Bozdogan, H.1
  • 9
    • 0002996131 scopus 로고    scopus 로고
    • Akaike's information criterion and recent developments in information complexity
    • Bozdogan H. Akaike's information criterion and recent developments in information complexity. J. Math. Psych. 44 (2000) 62-91
    • (2000) J. Math. Psych. , vol.44 , pp. 62-91
    • Bozdogan, H.1
  • 11
    • 0030263980 scopus 로고    scopus 로고
    • Genetic algorithms and their statistical applications: an introduction
    • Chatterjee S., Laudato M., and Lucy A.L. Genetic algorithms and their statistical applications: an introduction. Comput. Statist. Data Anal. 22 (1996) 633-651
    • (1996) Comput. Statist. Data Anal. , vol.22 , pp. 633-651
    • Chatterjee, S.1    Laudato, M.2    Lucy, A.L.3
  • 13
    • 34548264404 scopus 로고    scopus 로고
    • De Jong, K.A., Spears, W., 1990. An analysis of the interacting roles of population size and crossover in genetic algorithms. Proceedings of the First International Conference on Parallel Problem Solving from Nature. Morgan Kaufman, Los Altos, CA.
  • 14
    • 84950442000 scopus 로고
    • Logistic regression, survival analysis and the Kaplan-Meyer curve
    • Efron B. Logistic regression, survival analysis and the Kaplan-Meyer curve. J. Amer. Statist. Assoc. 83 (1988) 414-425
    • (1988) J. Amer. Statist. Assoc. , vol.83 , pp. 414-425
    • Efron, B.1
  • 15
    • 84950645271 scopus 로고
    • The Predictive Sample Reuse Method with Applications
    • Geisser S. The Predictive Sample Reuse Method with Applications. J. Amer. Statist. Assoc. 50 (1975) 320-328
    • (1975) J. Amer. Statist. Assoc. , vol.50 , pp. 320-328
    • Geisser, S.1
  • 16
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman S., Bienenstock E., and Doursat D. Neural networks and the bias/variance dilemma. Neural Comput. 4 (1992) 1-58
    • (1992) Neural Comput. , vol.4 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, D.3
  • 17
    • 0030305413 scopus 로고    scopus 로고
    • Hazard rate regression using ordinary nonparametric regression smoothers
    • Gray R.J. Hazard rate regression using ordinary nonparametric regression smoothers. J. Comput. Graph. Statist. 5 (1996) 190-207
    • (1996) J. Comput. Graph. Statist. , vol.5 , pp. 190-207
    • Gray, R.J.1
  • 18
    • 34548228082 scopus 로고    scopus 로고
    • Harrell, Jr., F.E., and with contributions from many other users, 2006. Hmisc: Harrell Miscellaneous. R package version 3.1-2. 〈http://biostat.mc.vanderbilt.edu/s/Hmisc〉, 〈http://biostat.mc.vanderbilt.edu/twiki/pub/Main/RS/sintro.pdf〉, 〈http://biostat.mc.vanderbilt.edu/twiki/pub/Main/StatReport/summary.pdf〉.
  • 21
    • 0038162240 scopus 로고    scopus 로고
    • A Bayesian neural network approach for modeling censored data with an application to prognosis after surgery for breast cancer
    • Lisboa P.J., Wong H., Harris P., and Swindell R. A Bayesian neural network approach for modeling censored data with an application to prognosis after surgery for breast cancer. Artificial Intelligence Med. 28 1 (2003) 1-25
    • (2003) Artificial Intelligence Med. , vol.28 , Issue.1 , pp. 1-25
    • Lisboa, P.J.1    Wong, H.2    Harris, P.3    Swindell, R.4
  • 23
    • 34548260569 scopus 로고    scopus 로고
    • McCullagh, P., Nelder, J.A., 1989. Generalized Linear Models. Chapman & Hall, London, pp. 23-25.
  • 25
    • 0003257214 scopus 로고
    • Prediction risk and architecture selection for neural networks
    • Cherkassky V., et al. (Ed), Springer, Berlin
    • Moody J. Prediction risk and architecture selection for neural networks. In: Cherkassky V., et al. (Ed). From Statistics to Neural Networks, NATO ASI Series F (1994), Springer, Berlin
    • (1994) From Statistics to Neural Networks, NATO ASI Series F
    • Moody, J.1
  • 26
    • 34548210135 scopus 로고    scopus 로고
    • Moody, J.E., 1992. The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems. In: Moody, J.E., Hanson, S.J., Lippmann, R.P. (Eds.), Advances in Neural Information Processing Systems, vol. 4, Morgan Kaufmann, San Mateo, CA, pp. 847-854.
  • 27
    • 0028544395 scopus 로고
    • Network information criterion--determining the number of hidden units for artificial neural network models
    • Murata N., Yoshizawa S., and Amari S. Network information criterion--determining the number of hidden units for artificial neural network models. IEEE Trans. Neural Networks 5 (1994) 865-872
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 28
    • 0000238336 scopus 로고
    • A simplex algorithm for function minimization
    • Nelder J.A., and Mead R. A simplex algorithm for function minimization. Comput. J. 7 (1965) 308-313
    • (1965) Comput. J. , vol.7 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 29
    • 34548256088 scopus 로고    scopus 로고
    • R Development Core Team, 2006. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL 〈http://www.R-project.org〉.
  • 31
  • 32
    • 84988465041 scopus 로고    scopus 로고
    • Shapiro, J., Prügel-Bennett, A., Rattray, M., 1994. A statistical mechanical formulation of the dynamics of genetic algorithms. In: Lecture Notes in Computer Science, vol. 865, pp. 17-27.
  • 33
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. J. Roy. Statist. Soc. B 36 (1974) 111-147
    • (1974) J. Roy. Statist. Soc. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 34
    • 34548246206 scopus 로고    scopus 로고
    • Syswerda, G., 1989. Uniform crossover in genetic algorithms. In: Schaffer, H. (Ed.), Third International Conference on Genetic Algorithms, vols. 2-9, Morgan Kaufmann, San Mateo.
  • 35
    • 0036799010 scopus 로고    scopus 로고
    • An information approach to regularization parameter selection under model misspecification
    • Urmanov A.M., Gribok A.V., Hines J.W., and Uhrig R.E. An information approach to regularization parameter selection under model misspecification. Inverse Problems 18 (2002) 1207-1228
    • (2002) Inverse Problems , vol.18 , pp. 1207-1228
    • Urmanov, A.M.1    Gribok, A.V.2    Hines, J.W.3    Uhrig, R.E.4
  • 38
    • 0005074312 scopus 로고
    • Three topics in ill posed inverse problems
    • Engl M., and Groetsch G. (Eds), Academic Press, New York
    • Wahba G. Three topics in ill posed inverse problems. In: Engl M., and Groetsch G. (Eds). Inverse and Ill-Posed Problems (1987), Academic Press, New York
    • (1987) Inverse and Ill-Posed Problems
    • Wahba, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.