-
1
-
-
34548293958
-
-
Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Csaki, F. (Eds.), Second International Symposium on Information Theory.
-
-
-
-
3
-
-
0031921607
-
Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach
-
Biganzoli E., Boracchi P., Mariani L., and Marubini E. Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. Statist. Med. 17 10 (1998) 1169-1186
-
(1998)
Statist. Med.
, vol.17
, Issue.10
, pp. 1169-1186
-
-
Biganzoli, E.1
Boracchi, P.2
Mariani, L.3
Marubini, E.4
-
4
-
-
0036199021
-
A general framework for neural network models on censored survival data
-
Biganzoli E., Boracchi P., and Marubini E. A general framework for neural network models on censored survival data. Neural Networks 15 2 (2002) 209-218
-
(2002)
Neural Networks
, vol.15
, Issue.2
, pp. 209-218
-
-
Biganzoli, E.1
Boracchi, P.2
Marubini, E.3
-
5
-
-
0142216643
-
Prognosis in node-negative primary breast cancer: a neural network analysis of risk profiles using routinely assessed factors
-
Biganzoli E., Boracchi P., Coradini D., Daidone M.G., and Marubini E. Prognosis in node-negative primary breast cancer: a neural network analysis of risk profiles using routinely assessed factors. Ann. Oncol. 14 (2003) 1484-1493
-
(2003)
Ann. Oncol.
, vol.14
, pp. 1484-1493
-
-
Biganzoli, E.1
Boracchi, P.2
Coradini, D.3
Daidone, M.G.4
Marubini, E.5
-
6
-
-
33744547243
-
Artificial neural network models for the joint modeling of discrete cause specific hazards
-
Biganzoli E., Boracchi P., Ambrogi F., and Marubini E. Artificial neural network models for the joint modeling of discrete cause specific hazards. Artificial Intelligence Med. 37 (2006) 119-130
-
(2006)
Artificial Intelligence Med.
, vol.37
, pp. 119-130
-
-
Biganzoli, E.1
Boracchi, P.2
Ambrogi, F.3
Marubini, E.4
-
8
-
-
34250108028
-
Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions
-
Bozdogan H. Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52 3 (1987) 345-370
-
(1987)
Psychometrika
, vol.52
, Issue.3
, pp. 345-370
-
-
Bozdogan, H.1
-
9
-
-
0002996131
-
Akaike's information criterion and recent developments in information complexity
-
Bozdogan H. Akaike's information criterion and recent developments in information complexity. J. Math. Psych. 44 (2000) 62-91
-
(2000)
J. Math. Psych.
, vol.44
, pp. 62-91
-
-
Bozdogan, H.1
-
11
-
-
0030263980
-
Genetic algorithms and their statistical applications: an introduction
-
Chatterjee S., Laudato M., and Lucy A.L. Genetic algorithms and their statistical applications: an introduction. Comput. Statist. Data Anal. 22 (1996) 633-651
-
(1996)
Comput. Statist. Data Anal.
, vol.22
, pp. 633-651
-
-
Chatterjee, S.1
Laudato, M.2
Lucy, A.L.3
-
13
-
-
34548264404
-
-
De Jong, K.A., Spears, W., 1990. An analysis of the interacting roles of population size and crossover in genetic algorithms. Proceedings of the First International Conference on Parallel Problem Solving from Nature. Morgan Kaufman, Los Altos, CA.
-
-
-
-
14
-
-
84950442000
-
Logistic regression, survival analysis and the Kaplan-Meyer curve
-
Efron B. Logistic regression, survival analysis and the Kaplan-Meyer curve. J. Amer. Statist. Assoc. 83 (1988) 414-425
-
(1988)
J. Amer. Statist. Assoc.
, vol.83
, pp. 414-425
-
-
Efron, B.1
-
15
-
-
84950645271
-
The Predictive Sample Reuse Method with Applications
-
Geisser S. The Predictive Sample Reuse Method with Applications. J. Amer. Statist. Assoc. 50 (1975) 320-328
-
(1975)
J. Amer. Statist. Assoc.
, vol.50
, pp. 320-328
-
-
Geisser, S.1
-
17
-
-
0030305413
-
Hazard rate regression using ordinary nonparametric regression smoothers
-
Gray R.J. Hazard rate regression using ordinary nonparametric regression smoothers. J. Comput. Graph. Statist. 5 (1996) 190-207
-
(1996)
J. Comput. Graph. Statist.
, vol.5
, pp. 190-207
-
-
Gray, R.J.1
-
18
-
-
34548228082
-
-
Harrell, Jr., F.E., and with contributions from many other users, 2006. Hmisc: Harrell Miscellaneous. R package version 3.1-2. 〈http://biostat.mc.vanderbilt.edu/s/Hmisc〉, 〈http://biostat.mc.vanderbilt.edu/twiki/pub/Main/RS/sintro.pdf〉, 〈http://biostat.mc.vanderbilt.edu/twiki/pub/Main/StatReport/summary.pdf〉.
-
-
-
-
21
-
-
0038162240
-
A Bayesian neural network approach for modeling censored data with an application to prognosis after surgery for breast cancer
-
Lisboa P.J., Wong H., Harris P., and Swindell R. A Bayesian neural network approach for modeling censored data with an application to prognosis after surgery for breast cancer. Artificial Intelligence Med. 28 1 (2003) 1-25
-
(2003)
Artificial Intelligence Med.
, vol.28
, Issue.1
, pp. 1-25
-
-
Lisboa, P.J.1
Wong, H.2
Harris, P.3
Swindell, R.4
-
23
-
-
34548260569
-
-
McCullagh, P., Nelder, J.A., 1989. Generalized Linear Models. Chapman & Hall, London, pp. 23-25.
-
-
-
-
25
-
-
0003257214
-
Prediction risk and architecture selection for neural networks
-
Cherkassky V., et al. (Ed), Springer, Berlin
-
Moody J. Prediction risk and architecture selection for neural networks. In: Cherkassky V., et al. (Ed). From Statistics to Neural Networks, NATO ASI Series F (1994), Springer, Berlin
-
(1994)
From Statistics to Neural Networks, NATO ASI Series F
-
-
Moody, J.1
-
26
-
-
34548210135
-
-
Moody, J.E., 1992. The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems. In: Moody, J.E., Hanson, S.J., Lippmann, R.P. (Eds.), Advances in Neural Information Processing Systems, vol. 4, Morgan Kaufmann, San Mateo, CA, pp. 847-854.
-
-
-
-
27
-
-
0028544395
-
Network information criterion--determining the number of hidden units for artificial neural network models
-
Murata N., Yoshizawa S., and Amari S. Network information criterion--determining the number of hidden units for artificial neural network models. IEEE Trans. Neural Networks 5 (1994) 865-872
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, pp. 865-872
-
-
Murata, N.1
Yoshizawa, S.2
Amari, S.3
-
28
-
-
0000238336
-
A simplex algorithm for function minimization
-
Nelder J.A., and Mead R. A simplex algorithm for function minimization. Comput. J. 7 (1965) 308-313
-
(1965)
Comput. J.
, vol.7
, pp. 308-313
-
-
Nelder, J.A.1
Mead, R.2
-
29
-
-
34548256088
-
-
R Development Core Team, 2006. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL 〈http://www.R-project.org〉.
-
-
-
-
31
-
-
0002346490
-
A study of control parameters affecting online performance of genetic algorithms for function optimization
-
Schaffer J.D. (Ed), Morgan Kaufmann, Los Altos, CA
-
Schaffer J.D., Caruana R.A., Eshelman L.J., and Das R. A study of control parameters affecting online performance of genetic algorithms for function optimization. In: Schaffer J.D. (Ed). Proceedings of the Third International Conference on Genetic Algorithms (1989), Morgan Kaufmann, Los Altos, CA
-
(1989)
Proceedings of the Third International Conference on Genetic Algorithms
-
-
Schaffer, J.D.1
Caruana, R.A.2
Eshelman, L.J.3
Das, R.4
-
32
-
-
84988465041
-
-
Shapiro, J., Prügel-Bennett, A., Rattray, M., 1994. A statistical mechanical formulation of the dynamics of genetic algorithms. In: Lecture Notes in Computer Science, vol. 865, pp. 17-27.
-
-
-
-
33
-
-
0000629975
-
Cross-validatory choice and assessment of statistical predictions
-
Stone M. Cross-validatory choice and assessment of statistical predictions. J. Roy. Statist. Soc. B 36 (1974) 111-147
-
(1974)
J. Roy. Statist. Soc. B
, vol.36
, pp. 111-147
-
-
Stone, M.1
-
34
-
-
34548246206
-
-
Syswerda, G., 1989. Uniform crossover in genetic algorithms. In: Schaffer, H. (Ed.), Third International Conference on Genetic Algorithms, vols. 2-9, Morgan Kaufmann, San Mateo.
-
-
-
-
35
-
-
0036799010
-
An information approach to regularization parameter selection under model misspecification
-
Urmanov A.M., Gribok A.V., Hines J.W., and Uhrig R.E. An information approach to regularization parameter selection under model misspecification. Inverse Problems 18 (2002) 1207-1228
-
(2002)
Inverse Problems
, vol.18
, pp. 1207-1228
-
-
Urmanov, A.M.1
Gribok, A.V.2
Hines, J.W.3
Uhrig, R.E.4
-
38
-
-
0005074312
-
Three topics in ill posed inverse problems
-
Engl M., and Groetsch G. (Eds), Academic Press, New York
-
Wahba G. Three topics in ill posed inverse problems. In: Engl M., and Groetsch G. (Eds). Inverse and Ill-Posed Problems (1987), Academic Press, New York
-
(1987)
Inverse and Ill-Posed Problems
-
-
Wahba, G.1
|