메뉴 건너뛰기




Volumn 37, Issue 2, 2006, Pages 119-130

Artificial neural network for the joint modelling of discrete cause-specific hazards

Author keywords

Artificial neural networks; Cause specific hazards; Competing risks; Generalized linear models

Indexed keywords

BIOLOGICAL ORGANS; DISEASES; MATHEMATICAL MODELS; NEURAL NETWORKS; OPTIMIZATION; POLYNOMIAL APPROXIMATION; REGRESSION ANALYSIS; SURGERY;

EID: 33744547243     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artmed.2006.01.004     Document Type: Article
Times cited : (25)

References (28)
  • 2
    • 0024913271 scopus 로고
    • Semiparametric Marshall-Olkin models applied to the occurrence of metastases at multiple sites after breast cancer
    • Klein J.P., Keiding N., and Kamby C. Semiparametric Marshall-Olkin models applied to the occurrence of metastases at multiple sites after breast cancer. Biometrics 45 (1989) 1073-1086
    • (1989) Biometrics , vol.45 , pp. 1073-1086
    • Klein, J.P.1    Keiding, N.2    Kamby, C.3
  • 3
    • 0029089461 scopus 로고
    • Applying Cox regression to competing risks
    • Lunn M., and McNeil D. Applying Cox regression to competing risks. Biometrics 51 (1995) 524-532
    • (1995) Biometrics , vol.51 , pp. 524-532
    • Lunn, M.1    McNeil, D.2
  • 4
    • 0029052662 scopus 로고
    • The restricted cubic spline as baseline hazard in the proportional hazards model with step function time dependent covariables
    • Herndon J.E., and Harrell Jr. F.E. The restricted cubic spline as baseline hazard in the proportional hazards model with step function time dependent covariables. Stat Med 14 (1995) 2119-2129
    • (1995) Stat Med , vol.14 , pp. 2119-2129
    • Herndon, J.E.1    Harrell Jr., F.E.2
  • 6
    • 0021639930 scopus 로고
    • Covariate analysis of competing-risks data with log-linear models
    • Larson M.G. Covariate analysis of competing-risks data with log-linear models. Biometrics 40 (1984) 459-468
    • (1984) Biometrics , vol.40 , pp. 459-468
    • Larson, M.G.1
  • 7
    • 0023430256 scopus 로고
    • A method of analysis taking into account competing events: application to the study of digestive complications following irradiation for cervical cancer
    • Kramar A., Pejovic M.H., and Chassagne D. A method of analysis taking into account competing events: application to the study of digestive complications following irradiation for cervical cancer. Stat Med 6 (1987) 785-794
    • (1987) Stat Med , vol.6 , pp. 785-794
    • Kramar, A.1    Pejovic, M.H.2    Chassagne, D.3
  • 8
    • 0242586102 scopus 로고    scopus 로고
    • Joint modelling of cause-specific hazard functions with cubic splines: an application to a large series of breast cancer patients
    • Boracchi P., Biganzoli E., and Marubini E. Joint modelling of cause-specific hazard functions with cubic splines: an application to a large series of breast cancer patients. Comput Stat Data Anal 42 (2003) 243-262
    • (2003) Comput Stat Data Anal , vol.42 , pp. 243-262
    • Boracchi, P.1    Biganzoli, E.2    Marubini, E.3
  • 9
    • 0035977415 scopus 로고    scopus 로고
    • Modelling cause-specific hazards with radial basis function artificial neural networks: application to 2233 breast cancer patients
    • Boracchi P., Biganzoli E., and Marubini E. Modelling cause-specific hazards with radial basis function artificial neural networks: application to 2233 breast cancer patients. Stat Med 30 (2001) 3677-3694
    • (2001) Stat Med , vol.30 , pp. 3677-3694
    • Boracchi, P.1    Biganzoli, E.2    Marubini, E.3
  • 10
    • 0031921607 scopus 로고    scopus 로고
    • Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach
    • Biganzoli E., Boracchi P., Mariani L., and Marubini E. Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. Stat Med 17 (1998) 1169-1186
    • (1998) Stat Med , vol.17 , pp. 1169-1186
    • Biganzoli, E.1    Boracchi, P.2    Mariani, L.3    Marubini, E.4
  • 11
    • 0036199021 scopus 로고    scopus 로고
    • A general framework for neural network models on censored survival data
    • Biganzoli E., Boracchi P., and Marubini E. A general framework for neural network models on censored survival data. Neural Netw 15 (2002) 209-218
    • (2002) Neural Netw , vol.15 , pp. 209-218
    • Biganzoli, E.1    Boracchi, P.2    Marubini, E.3
  • 12
    • 0038162240 scopus 로고    scopus 로고
    • A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer
    • Lisboa P.J.G., Wong H., Harris P., and Swindell R. A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer. Artif Intell Medi 28 (2003) 1-25
    • (2003) Artif Intell Medi , vol.28 , pp. 1-25
    • Lisboa, P.J.G.1    Wong, H.2    Harris, P.3    Swindell, R.4
  • 13
    • 0028357513 scopus 로고
    • Survival analysis and neural nets
    • Liestol K., Andersen P.K., and Andersen U. Survival analysis and neural nets. Stat Med 13 (1994) 1189-1200
    • (1994) Stat Med , vol.13 , pp. 1189-1200
    • Liestol, K.1    Andersen, P.K.2    Andersen, U.3
  • 15
    • 0142216643 scopus 로고    scopus 로고
    • Prognosis in node-negative primary breast cancer: a neural network analysis of risk profiles using routinely assessed factors
    • Biganzoli E., Boracchi P., Coradini D., Daidone M.G., and Marubini E. Prognosis in node-negative primary breast cancer: a neural network analysis of risk profiles using routinely assessed factors. Ann Oncol 14 (2003) 1484-1493
    • (2003) Ann Oncol , vol.14 , pp. 1484-1493
    • Biganzoli, E.1    Boracchi, P.2    Coradini, D.3    Daidone, M.G.4    Marubini, E.5
  • 17
    • 84950442000 scopus 로고
    • Logistic regression, survival analysis, and the Kaplan-Meyer curve
    • Efron B. Logistic regression, survival analysis, and the Kaplan-Meyer curve. J Am Stat Assoc 83 (1988) 414-425
    • (1988) J Am Stat Assoc , vol.83 , pp. 414-425
    • Efron, B.1
  • 21
    • 33744522906 scopus 로고    scopus 로고
    • Sarle WS. Neural network faq, 2002. Official FAQ of the Usenet newsgroup comp.ai. neural-nets (http://www.sas.com/pub/neural/FAQ.html). Accessed: 1 April 2005.
  • 22
    • 84958317948 scopus 로고
    • Neural networks and flexible regression and discrimination
    • Mardia K.V. (Ed), Carfax, Abingdon
    • Ripley B.D. Neural networks and flexible regression and discrimination. In: Mardia K.V. (Ed). Statistics and images advances in applied statistics (1994), Carfax, Abingdon 39-57
    • (1994) Statistics and images advances in applied statistics , pp. 39-57
    • Ripley, B.D.1
  • 23
    • 33744549841 scopus 로고    scopus 로고
    • Moody J. Prediction risk and architecture selection for neural networks. In: Cherkassky V, Friedman JH, Wechsler H, editors. From statistics to neural networks. NATO ASI Series F. Springer-Verlag; 1994.
  • 24
    • 0028544395 scopus 로고
    • Network information criterion-determining the number of hidden units for artificial neural network models
    • Murata N., Yoshizawa S., and Amari S. Network information criterion-determining the number of hidden units for artificial neural network models. IEEE Trans. Neural Networks 5 (1994) 865-872
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 25
    • 0000902690 scopus 로고
    • The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems
    • Moody J.E., Hanson S.J., and Lippmann R.P. (Eds), Morgan Kaufmann, San Mateo
    • Moody J.E. The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems. In: Moody J.E., Hanson S.J., and Lippmann R.P. (Eds). Advances in neural information processing systems vol. 4 (1992), Morgan Kaufmann, San Mateo 847-854
    • (1992) Advances in neural information processing systems , vol.4 , pp. 847-854
    • Moody, J.E.1
  • 26
    • 33744535517 scopus 로고    scopus 로고
    • Biganzoli E, Ambrogi F, Boracchi P. Selection of artificial neural network models for survival data. 23rd Meeting of the International Society for Clinical Biostatistics, Dijon, France, September 9-13, 2002.
  • 27
    • 8244219678 scopus 로고    scopus 로고
    • Prognostic factors for metachronous contralateral breast cancer: a comparison of the linear Cox regression model and its artificial neural network extension
    • Mariani L., Coradini D., Biganzoli E., Boracchi P., Marubini E., Pilotti S.,., et al. Prognostic factors for metachronous contralateral breast cancer: a comparison of the linear Cox regression model and its artificial neural network extension. Breast Cancer Res Treat 44 (1997) 167-178
    • (1997) Breast Cancer Res Treat , vol.44 , pp. 167-178
    • Mariani, L.1    Coradini, D.2    Biganzoli, E.3    Boracchi, P.4    Marubini, E.5    Pilotti, S.,.6
  • 28
    • 0030335796 scopus 로고    scopus 로고
    • Smoothing hazard functions and time-varying effects in discrete duration and competing risks models
    • Fahrmeir L., and Wagenpfeil S. Smoothing hazard functions and time-varying effects in discrete duration and competing risks models. J Am Stat Assoc 91 (1996) 1584-1594
    • (1996) J Am Stat Assoc , vol.91 , pp. 1584-1594
    • Fahrmeir, L.1    Wagenpfeil, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.