메뉴 건너뛰기




Volumn , Issue , 2009, Pages 2339-2346

Use of multi-objective genetic algorithms to investigate the diversity/accuracy dilemma in heterogeneous ensembles

Author keywords

[No Author keywords available]

Indexed keywords

BASE CLASSIFIERS; CLASSIFIER ENSEMBLES; EMPIRICAL INVESTIGATION; ENSEMBLE PERFORMANCE; ENSEMBLE SYSTEMS; HOMOGENOUS STRUCTURE; INDIVIDUAL CLASSIFIERS; MULTI-OBJECTIVE GENETIC ALGORITHM;

EID: 70449407188     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2009.5178758     Document Type: Conference Paper
Times cited : (21)

References (31)
  • 1
    • 35248893424 scopus 로고    scopus 로고
    • Comparison of classifier selection methods for improving committee performance. In Workshop on Multiple Classifier Systems
    • M. Aksela. "Comparison of classifier selection methods for improving committee performance". In Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science 2709, pp. 84-93, 2003.
    • (2003) Lecture Notes in Computer Science , vol.2709 , pp. 84-93
    • Aksela, M.1
  • 3
    • 70449390562 scopus 로고    scopus 로고
    • A. Chandra, A. Evolutionary framework for the creation of diverse hybrid ensembles for better generalization. Master thesis, University of Birmingham, School of Computer Science, 2004.
    • A. Chandra, A. Evolutionary framework for the creation of diverse hybrid ensembles for better generalization. Master thesis, University of Birmingham, School of Computer Science, 2004.
  • 6
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T. G. Dietterich. "An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization". Mach Learning, 40 (2), pp. 139-157, 2000.
    • (2000) Mach Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 10
    • 0032218851 scopus 로고    scopus 로고
    • T. Iba, T and Y. Takefuji. Adaptation of Neural Agent in Dynamic Environment: Hybrid System of Genetic Algorithm and Neural Network. IEEE Inernational Conference on Knowledge-Based Intelligent Eletronic Systems, pp. 21-23, 1998.
    • T. Iba, T and Y. Takefuji. "Adaptation of Neural Agent in Dynamic Environment: Hybrid System of Genetic Algorithm and Neural Network". IEEE Inernational Conference on Knowledge-Based Intelligent Eletronic Systems, pp. 21-23, 1998.
  • 11
    • 0042525838 scopus 로고    scopus 로고
    • A constructive algorithm for training cooperative neural network ensembles
    • M. M. Islam, X. Yao and K. Murase. "A constructive algorithm for training cooperative neural network ensembles". IEEE Transactions on Neural Networks, 14 (4), pp. 820-834, 2003.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.4 , pp. 820-834
    • Islam, M.M.1    Yao, X.2    Murase, K.3
  • 13
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L. I. Kuncheva and C. J. Whitaker. "Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy". Machine Learning, 51 (2), pp. 181-207, 2003.
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 17
    • 10444224737 scopus 로고    scopus 로고
    • Classifier Selection for Majority Voting
    • D. Ruta and B. Gabrys. "Classifier Selection for Majority Voting". Information Fusion, 6, pp. 163-168, 2005.
    • (2005) Information Fusion , vol.6 , pp. 163-168
    • Ruta, D.1    Gabrys, B.2
  • 19
    • 33749018252 scopus 로고    scopus 로고
    • An analysis of diversity measures
    • E. K. Tang, P. N. Suganthan and X. Yao. "An analysis of diversity measures". Machine Learning, 65 (1), pp. 247-271, 2006.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 247-271
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 20
    • 10444238133 scopus 로고    scopus 로고
    • Diversity in search strategies for ensemble feature selection
    • A. Tsymbal, M. Pechenizkiy and P. Cunningham. "Diversity in search strategies for ensemble feature selection". Information Fusion, 6 (1), pp. 83-98, 2005.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 83-98
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 21
    • 29144474463 scopus 로고    scopus 로고
    • An experimental bias-variance analysis of SVM ensembles based on resampling techniques
    • G. Valentino. "An experimental bias-variance analysis of SVM ensembles based on resampling techniques". IEEE Transactions on System, Man and Cybernetics - Part B, 35 (5), pp. 1252-1271, 2005.
    • (2005) IEEE Transactions on System, Man and Cybernetics - Part B , vol.35 , Issue.5 , pp. 1252-1271
    • Valentino, G.1
  • 22
    • 84867049048 scopus 로고    scopus 로고
    • Diversity between neural networks and decision trees for building multiple classifier systems
    • F. Roli, J. Kittler, and T. Windeatt Eds, Springer
    • W. Wang, P. Jones and P. Partridge. "Diversity between neural networks and decision trees for building multiple classifier systems'. In F. Roli, J. Kittler, and T. Windeatt (Eds.), Multiple Classifier Systems (Vol. XII, pp. 240-249). Springer, 2000.
    • (2000) Multiple Classifier Systems , vol.12 , pp. 240-249
    • Wang, W.1    Jones, P.2    Partridge, P.3
  • 23
    • 85178316876 scopus 로고    scopus 로고
    • W. Wang, D. Partridge and J. Etherington. Hybrid ensembles and coincident failure diversity. Proceedings of the International Joint Conference on Neural Networks. V.4, pp. 2376-2381, 2001.
    • W. Wang, D. Partridge and J. Etherington. "Hybrid ensembles and coincident failure diversity". Proceedings of the International Joint Conference on Neural Networks. V.4, pp. 2376-2381, 2001.
  • 24
    • 10444224738 scopus 로고    scopus 로고
    • Diversity measures for multiple classifier system analysis and design
    • T. Windeatt. "Diversity measures for multiple classifier system analysis and design". Information Fusion, 6 (1), pp. 21-36, 2005.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 21-36
    • Windeatt, T.1
  • 26
    • 70449424278 scopus 로고    scopus 로고
    • L. Xuchun, Y. Zhu and E. Sung. A New Diversity Augmentation Methodology for Handling Diversity/Accuracy Dilemma in Boosting Submitted to IEEE Transactions on Neural Networks, 2008.
    • L. Xuchun, Y. Zhu and E. Sung. "A New Diversity Augmentation Methodology for Handling Diversity/Accuracy Dilemma in Boosting" Submitted to IEEE Transactions on Neural Networks, 2008.
  • 27
    • 0030549306 scopus 로고    scopus 로고
    • Use of methodological diversity to improve neural network generalization
    • W. Yates and D. Partridge. "Use of methodological diversity to improve neural network generalization". Neural Computing and Applications, 4 (2), pp. 114-128, 1996.
    • (1996) Neural Computing and Applications , vol.4 , Issue.2 , pp. 114-128
    • Yates, W.1    Partridge, D.2
  • 30
    • 51049093485 scopus 로고    scopus 로고
    • JMet al. - A Java Framework for Developing Multi-Objective Optimization Metaheuristics
    • Technical Report, University of Malaga
    • J. J. Durillo, A. J. Nebro, F. Luna, B. Dorronsoro and E. Alba. "JMet al. - A Java Framework for Developing Multi-Objective Optimization Metaheuristics". Technical Report, University of Malaga, 2006.
    • (2006)
    • Durillo, J.J.1    Nebro, A.J.2    Luna, F.3    Dorronsoro, B.4    Alba, E.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.