-
1
-
-
0037295044
-
Why chloroplasts and mitochondria contain genomes
-
Allen, J. F. 2003. Why chloroplasts and mitochondria contain genomes. Comp. Funct. Genomics 4:31-36.
-
(2003)
Comp. Funct. Genomics
, vol.4
, pp. 31-36
-
-
Allen, J.F.1
-
2
-
-
13244282994
-
Heat shock proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone
-
Barreiro, C., E. Gonzalez-Lavado, S. Brand, A. Tauch, and J. F. Martin. 2005. Heat shock proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone. J. Bacteriol. 187:884-889.
-
(2005)
J. Bacteriol.
, vol.187
, pp. 884-889
-
-
Barreiro, C.1
Gonzalez-Lavado, E.2
Brand, S.3
Tauch, A.4
Martin, J.F.5
-
3
-
-
23044498961
-
-
John Wiley & Sons, New York, NY
-
Bonifacino, J. S., E. C. Dell'Angelica, and T. A. Springer. 1988. Current protocols in immunology. John Wiley & Sons, New York, NY.
-
(1988)
Current Protocols in Immunology
-
-
Bonifacino, J.S.1
Dell'Angelica, E.C.2
Springer, T.A.3
-
4
-
-
0027943510
-
The crystal structure of the bacterial chaperonin GroEL at 2.8 Å
-
DOI 10.1038/371578a0
-
Braig, K., Z. Otwinowski, R. Hegde, D. C. Boisvert, A. Joachimiak, A. L. Horwich, and P. B. Sigler. 1994. The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371:578-586. (Pubitemid 24315736)
-
(1994)
Nature
, vol.371
, Issue.6498
, pp. 578-586
-
-
Braig, K.1
Otwinowski, Z.2
Hegde, R.3
Boisvert, D.C.4
Joachimiak, A.5
Horwich, A.L.6
Sigler, P.B.7
-
5
-
-
0031943566
-
Analysis of chaperone function using citrate synthase as nonnative substrate protein
-
DOI 10.1016/S0076-6879(98)90029-5
-
Buchner, J., H. Grallert, and U. Jakob. 1998. Analysis of chaperone function using citrate synthase as nonnative substrate protein. Methods Enzymol. 290:323-338. (Pubitemid 28157761)
-
(1998)
Methods in Enzymology
, vol.290
, pp. 323-338
-
-
Buchner, J.1
Grallert, H.2
Jakob, U.3
-
7
-
-
0032489016
-
The Hsp70 and Hsp60 chaperone machines
-
Bukau, B., and A. L. Horwich. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92:351-366.
-
(1998)
Cell
, vol.92
, pp. 351-366
-
-
Bukau, B.1
Horwich, A.L.2
-
8
-
-
0034671453
-
From minichaperone to GroEL 3: Properties of an active single-ring mutant of GroEL
-
Chatellier, J., F. Hill, N. W. Foster, P. Goloubinoff, and A. R. Fersht. 2000. From minichaperone to GroEL 3: properties of an active single-ring mutant of GroEL. J. Mol. Biol. 304:897-910.
-
(2000)
J. Mol. Biol.
, vol.304
, pp. 897-910
-
-
Chatellier, J.1
Hill, F.2
Foster, N.W.3
Goloubinoff, P.4
Fersht, A.R.5
-
9
-
-
0035913910
-
GroEL/GroES-mediated folding of a protein too large to be encapsulated
-
Chaudhuri, T. K., G. W. Farr, W. A. Fenton, S. Rospert, and A. L. Horwich. 2001. GroEL/GroES-mediated folding of a protein too large to be encapsulated. Cell 107:235-246.
-
(2001)
Cell
, vol.107
, pp. 235-246
-
-
Chaudhuri, T.K.1
Farr, G.W.2
Fenton, W.A.3
Rospert, S.4
Horwich, A.L.5
-
10
-
-
33846202165
-
An Expanded Conformation of Single-Ring GroEL-GroES Complex Encapsulates an 86 kDa Substrate
-
DOI 10.1016/j.str.2006.09.010, PII S0969212606003960
-
Chen, D., J. Song, D. T. Chuang, W. Chiu, and S. J. Ludtke. 2006. An expanded conformation of single-ring GroEL-GroES complex encapsulates an 86 kDa substrate. Structure 14:1711-1722. (Pubitemid 46107276)
-
(2006)
Structure
, vol.14
, Issue.11
, pp. 1711-1722
-
-
Chen, D.-H.1
Song, J.-L.2
Chuang, D.T.3
Chiu, W.4
Ludtke, S.J.5
-
11
-
-
0033598941
-
The crystal structure of a GroEL/peptide complex: Plasticity as a basis for substrate diversity
-
Chen, L., and P. B. Sigler. 1999. The crystal structure of a GroEL/peptide complex: plasticity as a basis for substrate diversity. Cell 99:757-768. (Pubitemid 30017646)
-
(1999)
Cell
, vol.99
, Issue.7
, pp. 757-768
-
-
Chen, L.1
Sigler, P.B.2
-
12
-
-
70350490633
-
-
Reference deleted
-
Reference deleted.
-
-
-
-
13
-
-
0032508046
-
Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence
-
Cole, S. T., R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. V. Gordon, K. Eiglmeier, S. Gas, C. E. Barry III, F. Tekaia, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles, N. Hamlin, S. Holroyd, T. Hornsby, K. Jagels, B. G. Barrell, et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537-544.
-
(1998)
Nature
, vol.393
, pp. 537-544
-
-
Cole, S.T.1
Brosch, R.2
Parkhill, J.3
Garnier, T.4
Churcher, C.5
Harris, D.6
Gordon, S.V.7
Eiglmeier, K.8
Gas, S.9
Barry III, C.E.10
Tekaia, F.11
Badcock, K.12
Basham, D.13
Brown, D.14
Chillingworth, T.15
Connor, R.16
Davies, R.17
Devlin, K.18
Feltwell, T.19
Gentles, S.20
Hamlin, N.21
Holroyd, S.22
Hornsby, T.23
Jagels, K.24
Barrell, B.G.25
more..
-
14
-
-
0034697297
-
Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding
-
Dickson, R., C. Weiss, R. J. Howard, S. P. Alldrich, R. J. Ellis, G. H. Lorimer, A. Azem, and P. V. Viitanen. 2000. Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding J. Biol. Chem. 275:11829-11835.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 11829-11835
-
-
Dickson, R.1
Weiss, C.2
Howard, R.J.3
Alldrich, S.P.4
Ellis, R.J.5
Lorimer, G.H.6
Azem, A.7
Viitanen, P.V.8
-
15
-
-
0030750584
-
In vivo observation of polypeptide flux through the bacterial chaperonin system
-
Ewalt, K. L., J. P. Hendrick, W. A. Houry, and F. U. Hartl. 1997. In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 90:491-500.
-
(1997)
Cell
, vol.90
, pp. 491-500
-
-
Ewalt, K.L.1
Hendrick, J.P.2
Houry, W.A.3
Hartl, F.U.4
-
16
-
-
34248349952
-
Perturbed ATPase activity and not "close confinement" of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL
-
Farr, G. W., W. A. Fenton, and A. L. Horwich. 2007. Perturbed ATPase activity and not "close confinement" of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL. Proc. Natl. Acad. Sci. USA 104:5342-5347.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 5342-5347
-
-
Farr, G.W.1
Fenton, W.A.2
Horwich, A.L.3
-
17
-
-
0024554107
-
The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures
-
Fayet, O., T. Ziegelhoffer, and C. Georgopoulos. 1989. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J. Bacteriol. 171:1379-1385.
-
(1989)
J. Bacteriol.
, vol.171
, pp. 1379-1385
-
-
Fayet, O.1
Ziegelhoffer, T.2
Georgopoulos, C.3
-
18
-
-
0027239662
-
One member of a groESL-like chaperonin multigene family of Bradyrhizobium japonicum is co-regulated with the symbiotic nitrogen fixation genes
-
Fischer, H. M., M. Babst, T. Kaspar, G. Acuña, F. Arigoni, and H. Hennecke. 1993. One member of a groESL-like chaperonin multigene family of Bradyrhizobium japonicum is co-regulated with the symbiotic nitrogen fixation genes. EMBO J. 12:2901-2912.
-
(1993)
EMBO J.
, vol.12
, pp. 2901-2912
-
-
Fischer, H.M.1
Babst, M.2
Kaspar, T.3
Acuña, G.4
Arigoni, F.5
Hennecke, H.6
-
19
-
-
0035847097
-
Excluded volume effects on the refolding and assembly of an oligomeric protein. GroEL, a case study
-
Galan, A., B. Sot, O. Llorca, J. L. Carrascosa, J. M. Valpuesta, and A. Muga. 2001. Excluded volume effects on the refolding and assembly of an oligomeric protein. GroEL, a case study. J. Biol. Chem. 276:957-964.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 957-964
-
-
Galan, A.1
Sot, B.2
Llorca, O.3
Carrascosa, J.L.4
Valpuesta, J.M.5
Muga, A.6
-
20
-
-
0017879067
-
Identification of a host protein necessary for bacteriophage morphogenesis (the groE gene product)
-
Georgopoulos, C. P., and B. Hohn. 1978. Identification of a host protein necessary for bacteriophage morphogenesis (the groE gene product). Proc. Natl. Acad. Sci. USA 75:131-135.
-
(1978)
Proc. Natl. Acad. Sci. USA
, vol.75
, pp. 131-135
-
-
Georgopoulos, C.P.1
Hohn, B.2
-
21
-
-
33845351084
-
Multiple gene duplication and rapid evolution in the groEL gene: Functional implications
-
Goyal, K., R. Qamra, and S. C. Mande. 2006. Multiple gene duplication and rapid evolution in the groEL gene: functional implications. J. Mol. Evol. 63:781-787.
-
(2006)
J. Mol. Evol.
, vol.63
, pp. 781-787
-
-
Goyal, K.1
Qamra, R.2
Mande, S.C.3
-
22
-
-
0029018327
-
Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter
-
Guzman, L.-M., D. Belin, M. J. Carson, and J. Beckwith. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177:4121-4130.
-
(1995)
J. Bacteriol.
, vol.177
, pp. 4121-4130
-
-
Guzman, L.-M.1
Belin, D.2
Carson, M.J.3
Beckwith, J.4
-
23
-
-
27144448839
-
Some like it hot: The structure and function of small heat-shock proteins
-
Haslbeck, M., T. Franzmann, D. Weinfurtner, and J. Buchner. 2005. Some like it hot: the structure and function of small heat-shock proteins. Nat. Struct. Mol. Biol. 12:842-846.
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 842-846
-
-
Haslbeck, M.1
Franzmann, T.2
Weinfurtner, D.3
Buchner, J.4
-
24
-
-
0029157195
-
Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding
-
Hayer-Hartl, M. K., J. Martin, and F. U. Hartl. 1995. Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding. Science 269:836-841.
-
(1995)
Science
, vol.269
, pp. 836-841
-
-
Hayer-Hartl, M.K.1
Martin, J.2
Hartl, F.U.3
-
26
-
-
0027214204
-
Folding in vivo of bacterial cytoplasmic proteins: Role of GroEL
-
DOI 10.1016/0092-8674(93)90470-B
-
Horwich, A. L., K. B. Low, W. A. Fenton, I. N. Hirshfield, and K. Furtak. 1993. Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. Cell 74:909-917. (Pubitemid 23270610)
-
(1993)
Cell
, vol.74
, Issue.5
, pp. 909-917
-
-
Horwich, A.L.1
Low, K.B.2
Fenton, W.A.3
Hirshfield, I.N.4
Furtak, K.5
-
27
-
-
0033547324
-
Identification of in vivo substrates of the chaperonin GroEL
-
Houry, W. A., D. Frishman, C. Eckerskorn, F. Lottspeich, and F. U. Hartl. 1999. Identification of in vivo substrates of the chaperonin GroEL. Nature 402:147-154.
-
(1999)
Nature
, vol.402
, pp. 147-154
-
-
Houry, W.A.1
Frishman, D.2
Eckerskorn, C.3
Lottspeich, F.4
Hartl, F.U.5
-
28
-
-
42149117075
-
A Mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.1 is viable but fails to induce an inflammatory response in animal models of infection
-
Hu, Y., B. Henderson, P. A. Lund, P. Tormay, M. T. Ahmed, S. S. Gurcha, G. S. Besra, and A. R. M. Coates. 2008. A Mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.1 is viable but fails to induce an inflammatory response in animal models of infection. Infect. Immun. 76:1535-1546.
-
(2008)
Infect. Immun.
, vol.76
, pp. 1535-1546
-
-
Hu, Y.1
Henderson, B.2
Lund, P.A.3
Tormay, P.4
Ahmed, M.T.5
Gurcha, S.S.6
Besra, G.S.7
Coates, A.R.M.8
-
29
-
-
0033537960
-
Mechanisms for GroEL/GroES-mediated folding of a large 86-kDa fusion polypeptide in vitro
-
Huang, Y. S., and D. T. Chuang. 1999. Mechanisms for GroEL/GroES-mediated folding of a large 86-kDa fusion polypeptide in vitro. J. Biol. Chem. 274:10405-10412.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 10405-10412
-
-
Huang, Y.S.1
Chuang, D.T.2
-
30
-
-
0037336256
-
Molecular analysis of the multiple GroEL proteins of chlamydiae
-
Karunakaran, K. P., Y. Noguchi, T. D. Read, A. Cherkasov, J. Kwee, C. Shen, C. C. Nelson, and R. C. Brunham. 2003. Molecular analysis of the multiple GroEL proteins of chlamydiae. J. Bacteriol. 185:1958-1966.
-
(2003)
J. Bacteriol.
, vol.185
, pp. 1958-1966
-
-
Karunakaran, K.P.1
Noguchi, Y.2
Read, T.D.3
Cherkasov, A.4
Kwee, J.5
Shen, C.6
Nelson, C.C.7
Brunham, R.C.8
-
31
-
-
22744447508
-
Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli
-
Kerner, M. J., D. J. Naylor, Y. Ishihama, T. Maier, H. C. Chang, A. P. Stines, C. Georgopoulos, D. Frishman, M. Hayer-Hartl, M. Mann, and F. U. Hartl. 2005. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122:209-220.
-
(2005)
Cell
, vol.122
, pp. 209-220
-
-
Kerner, M.J.1
Naylor, D.J.2
Ishihama, Y.3
Maier, T.4
Chang, H.C.5
Stines, A.P.6
Georgopoulos, C.7
Frishman, D.8
Hayer-Hartl, M.9
Mann, M.10
Hartl, F.U.11
-
32
-
-
33847635621
-
Concerted ATP-induced allosteric transitions in GroEL facilitate release of protein substrate domains in an all-or-none manner
-
Kipnis, Y., N. Papo, G. Haran, and A. Horovitz. 2007. Concerted ATP-induced allosteric transitions in GroEL facilitate release of protein substrate domains in an all-or-none manner. Proc. Natl. Acad. Sci. USA 104:3119-3124.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 3119-3124
-
-
Kipnis, Y.1
Papo, N.2
Haran, G.3
Horovitz, A.4
-
33
-
-
0034773339
-
Assembly of chaperonin complexes
-
Kusmierczyk, A. R., and J. Martin. 2001. Assembly of chaperonin complexes. Mol. Biotechnol. 19:141-153.
-
(2001)
Mol. Biotechnol.
, vol.19
, pp. 141-153
-
-
Kusmierczyk, A.R.1
Martin, J.2
-
34
-
-
0034836608
-
Type I chaperonins: Not all are created equal
-
Levy-Rimler, G., P. Viitanen, C. Weiss, R. Sharkia, A. Greenberg, A. Niv, A. Lustig, Y. Delarea, and A. Azem. 2001. Type I chaperonins: not all are created equal. Eur. J. Biochem. 268:3465-3472.
-
(2001)
Eur. J. Biochem.
, vol.268
, pp. 3465-3472
-
-
Levy-Rimler, G.1
Viitanen, P.2
Weiss, C.3
Sharkia, R.4
Greenberg, A.5
Niv, A.6
Lustig, A.7
Delarea, Y.8
Azem, A.9
-
35
-
-
4944221602
-
Expansion and compression of a protein folding intermediate by GroEL
-
DOI 10.1016/j.molcel.2004.09.003, PII S1097276504005210
-
Lin, Z., and H. S. Rye. 2004. Expansion and compression of a protein folding intermediate by GroEL. Mol. Cell 16:23-34. (Pubitemid 39330149)
-
(2004)
Molecular Cell
, vol.16
, Issue.1
, pp. 23-34
-
-
Lin, Z.1
Rye, H.S.2
-
36
-
-
2642659387
-
GroE is vital for cell-wall synthesis
-
McLennan, N., and M. Masters. 1998. GroE is vital for cell-wall synthesis. Nature 392:159.
-
(1998)
Nature
, vol.392
, pp. 159
-
-
McLennan, N.1
Masters, M.2
-
37
-
-
0034478124
-
The lower hydrolysis of ATP by the stress protein GroEL is a major factor responsible for the diminished chaperonin activity at low temperature
-
Mendoza, J. A., P. Dulin, and T. Warren. 2000. The lower hydrolysis of ATP by the stress protein GroEL is a major factor responsible for the diminished chaperonin activity at low temperature. Cryobiology 41:319-323.
-
(2000)
Cryobiology
, vol.41
, pp. 319-323
-
-
Mendoza, J.A.1
Dulin, P.2
Warren, T.3
-
38
-
-
34248183398
-
Serine threonine protein kinases of mycobacterial genus: Phylogeny to function
-
DOI 10.1152/physiolgenomics.00221.2006
-
Narayan, A., P. Sachdeva, K. Sharma, A. K. Saini, A. K. Tyagi, and Y. Singh. 2007. Serine threonine protein kinases of mycobacterial genus: phylogeny to function. Physiol. Genomics 29:66-75. (Pubitemid 46708763)
-
(2007)
Physiological Genomics
, vol.29
, Issue.1
, pp. 66-75
-
-
Narayan, A.1
Sachdeva, P.2
Sharma, K.3
Saini, A.K.4
Tyagi, A.K.5
Singh, Y.6
-
39
-
-
28344453690
-
GroEL1: A dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria
-
DOI 10.1016/j.cell.2005.09.012, PII S0092867405009657
-
Ojha, A., M. Anand, A. Bhatt, L. Kremer, W. R. Jacobs, and G. F. Hatfull. 2005. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123:861-873. (Pubitemid 41721032)
-
(2005)
Cell
, vol.123
, Issue.5
, pp. 861-873
-
-
Ojha, A.1
Anand, M.2
Bhatt, A.3
Kremer, L.4
Jacobs Jr., W.R.5
Hatfull, G.F.6
-
40
-
-
9244227956
-
Crystal structure of the 65-kDa heat shock protein, chaperonin 60.2 of Mycobacterium tuberculosis
-
Qamra, R., and S. C. Mande. 2004. Crystal structure of the 65-kDa heat shock protein, chaperonin 60.2 of Mycobacterium tuberculosis. J. Bacteriol. 186:8105-8113.
-
(2004)
J. Bacteriol.
, vol.186
, pp. 8105-8113
-
-
Qamra, R.1
Mande, S.C.2
-
41
-
-
4344587654
-
Mycobacterium tuberculosis GroEL homologues unusually exist as lower oligomers and retain the ability to suppress aggregation of substrate proteins
-
Qamra, R., V. Srinivas, and S. C. Mande. 2004. Mycobacterium tuberculosis GroEL homologues unusually exist as lower oligomers and retain the ability to suppress aggregation of substrate proteins. J. Mol. Biol. 342:605-617.
-
(2004)
J. Mol. Biol.
, vol.342
, pp. 605-617
-
-
Qamra, R.1
Srinivas, V.2
Mande, S.C.3
-
43
-
-
0030592538
-
The chaperonin ATPase cycle: Mechanism of allosteric switching and movements of substrate-binding domains in GroEL
-
Roseman, A. M., S. Chen, H. White, K. Braig, and H. R. Saibil. 1996. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 87:241-251.
-
(1996)
Cell
, vol.87
, pp. 241-251
-
-
Roseman, A.M.1
Chen, S.2
White, H.3
Braig, K.4
Saibil, H.R.5
-
44
-
-
84904734629
-
Preparation of culture filtrate proteins from Mycobacterium tuberculosis
-
T. Parish and N. G. Stoker (ed.), Humana Press, Inc., Totowa, NJ
-
Rosenkrands, I., and P. Andersen. 2001. Preparation of culture filtrate proteins from Mycobacterium tuberculosis, p. 205-216. In T. Parish and N. G. Stoker (ed.), Methods in molecular medicine: Mycobacterium tuberculosis protocols, vol.54. Humana Press, Inc., Totowa, NJ.
-
(2001)
Methods in Molecular Medicine: Mycobacterium Tuberculosis Protocols
, vol.54
, pp. 205-216
-
-
Rosenkrands, I.1
Andersen, P.2
-
45
-
-
0033617129
-
GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings
-
Rye, H. S., A. M. Roseman, S. Chen, K. Furtak, W. A. Fenton, H. R. Saibil, and A. L. Horwich. 1999. GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 97:325-338.
-
(1999)
Cell
, vol.97
, pp. 325-338
-
-
Rye, H.S.1
Roseman, A.M.2
Chen, S.3
Furtak, K.4
Fenton, W.A.5
Saibil, H.R.6
Horwich, A.L.7
-
46
-
-
0033597834
-
On the maximum size of proteins to stay and fold in the cavity of GroEL underneath GroES
-
Sakikawa, C., H. Taguchi, Y. Makino, and M. Yoshida. 1999. On the maximum size of proteins to stay and fold in the cavity of GroEL underneath GroES. J. Biol. Chem. 274:21251-21256.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 21251-21256
-
-
Sakikawa, C.1
Taguchi, H.2
Makino, Y.3
Yoshida, M.4
-
47
-
-
0004136246
-
-
2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
-
Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
-
(1989)
Molecular Cloning: A Laboratory Manual
-
-
Sambrook, J.1
Fritsch, E.F.2
Maniatis, T.3
-
48
-
-
0031684079
-
Structure and function in GroEL-mediated protein folding
-
Sigler, P. B., Z. Xu, H. S. Rye, S. G. Burston, W. A. Fenton, and A. L. Horwich. 1998. Structure and function in GroEL-mediated protein folding. Annu. Rev. Biochem. 67:581-608.
-
(1998)
Annu. Rev. Biochem.
, vol.67
, pp. 581-608
-
-
Sigler, P.B.1
Xu, Z.2
Rye, H.S.3
Burston, S.G.4
Fenton, W.A.5
Horwich, A.L.6
-
49
-
-
33645237456
-
Residues in substrate proteins that interact with GroEL in the capture process are buried in the native state
-
Stan, G., B. R. Brooks, G. H. Lorimer, and D. Thirumalai. 2006. Residues in substrate proteins that interact with GroEL in the capture process are buried in the native state. Proc. Natl. Acad. Sci. USA 103:4433-4438.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 4433-4438
-
-
Stan, G.1
Brooks, B.R.2
Lorimer, G.H.3
Thirumalai, D.4
-
50
-
-
0034575339
-
Assay of chaperonin-assisted refolding of citrate synthase
-
C. Schneider (ed.), Humana Press, Totowa, NJ
-
Steede, N. K., S. L. Temkin, and S. J. Landry. 2000. Assay of chaperonin-assisted refolding of citrate synthase, p. 133-138. In C. Schneider (ed.), Methods in molecular biology: chaperonin protocols, vol.140. Humana Press, Totowa, NJ.
-
(2000)
Methods in Molecular Biology: Chaperonin Protocols
, vol.140
, pp. 133-138
-
-
Steede, N.K.1
Temkin, S.L.2
Landry, S.J.3
-
51
-
-
0028110130
-
DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution
-
Stemmer, W. P. 1994. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91:10747-10751.
-
(1994)
Proc. Natl. Acad. Sci. USA
, vol.91
, pp. 10747-10751
-
-
Stemmer, W.P.1
-
52
-
-
33646897305
-
Structural Features of the GroEL-GroES Nano-Cage Required for Rapid Folding of Encapsulated Protein
-
DOI 10.1016/j.cell.2006.04.027, PII S0092867406005605
-
Tang, Y., H. Chang, A. Roeben, D. Wischnewski, N. Wischnewski, M. J. Kerner, F. U. Hartl, and M. Hayer-Hartl. 2006. Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 125:903-914. (Pubitemid 43795198)
-
(2006)
Cell
, vol.125
, Issue.5
, pp. 903-914
-
-
Tang, Y.-C.1
Chang, H.-C.2
Roeben, A.3
Wischnewski, D.4
Wischnewski, N.5
Kerner, M.J.6
Hartl, F.U.7
Hayer-Hartl, M.8
-
54
-
-
0020030003
-
Evidence that the two Escherichia coli groE morphogenetic gene products interact in vivo
-
Tilly, K., and C. Georgopoulos. 1982. Evidence that the two Escherichia coli groE morphogenetic gene products interact in vivo. J. Bacteriol. 149:1082-1088.
-
(1982)
J. Bacteriol.
, vol.149
, pp. 1082-1088
-
-
Tilly, K.1
Georgopoulos, C.2
-
55
-
-
0028031345
-
Dynamics of the chaperonin ATPase cycle: Implications for facilitated protein folding
-
Todd, M. J., P. V. Viitanen, and G. H. Lorimer. 1994. Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science 265:659-666.
-
(1994)
Science
, vol.265
, pp. 659-666
-
-
Todd, M.J.1
Viitanen, P.V.2
Lorimer, G.H.3
-
56
-
-
2442482377
-
GroEL mediates protein folding with a two successive timer mechanism
-
DOI 10.1016/S1097-2765(04)00261-8, PII S1097276504002618
-
Ueno, T., H. Taguchi, H. Tadakuma, M. Yoshida, and T. Funatsu. 2004. GroEL mediates protein folding with a two successive timer mechanism. Mol. Cell 14:423-434. (Pubitemid 38648796)
-
(2004)
Molecular Cell
, vol.14
, Issue.4
, pp. 423-434
-
-
Ueno, T.1
Taguchi, H.2
Tadakuma, H.3
Yoshida, M.4
Funatsu, T.5
-
58
-
-
0037184939
-
Directed evolution of substrate-optimized GroEL/S chaperonins
-
Wang, J. D., C. Herman, K. A. Tipton, C. A. Gross, and J. S. Weissman. 2002. Directed evolution of substrate-optimized GroEL/S chaperonins. Cell 111:1027-1039.
-
(2002)
Cell
, vol.111
, pp. 1027-1039
-
-
Wang, J.D.1
Herman, C.2
Tipton, K.A.3
Gross, C.A.4
Weissman, J.S.5
-
59
-
-
0032514615
-
GroEL-GroES-mediated protein folding requires an intact central cavity
-
Wang, J. D., M. D. Michelitsch, and J. S. Weissman. 1998. GroEL-GroES-mediated protein folding requires an intact central cavity. Proc. Natl. Acad. Sci. USA 95:12163-12168.
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 12163-12168
-
-
Wang, J.D.1
Michelitsch, M.D.2
Weissman, J.S.3
-
60
-
-
0031579372
-
Splicing by overlap extension by PCR using asymmetric amplification: An improved technique for the generation of hybrid proteins of immunological interest
-
Warrens, A. N., M. D. Jones, and R. I. Lechler. 1997. Splicing by overlap extension by PCR using asymmetric amplification: an improved technique for the generation of hybrid proteins of immunological interest. Gene 186:29-35.
-
(1997)
Gene
, vol.186
, pp. 29-35
-
-
Warrens, A.N.1
Jones, M.D.2
Lechler, R.I.3
-
61
-
-
38149136540
-
Mycobacterial Ser/Thr protein kinases and phosphatases: Physiological roles and therapeutic potential
-
Wehenkel, A., M. Bellinzoni, M. Graña, R. Duran, A. Villarino, P. Fernandez, G. Andre-Leroux, P. England, H. Takiff, C. Cerveñansky, S. T. Cole, and P. M. Alzari. 2008. Mycobacterial Ser/Thr protein kinases and phosphatases: physiological roles and therapeutic potential. Biochim. Biophys. Acta 1784:193-202.
-
(2008)
Biochim. Biophys. Acta
, vol.1784
, pp. 193-202
-
-
Wehenkel, A.1
Bellinzoni, M.2
Graña, M.3
Duran, R.4
Villarino, A.5
Fernandez, P.6
Andre-Leroux, G.7
England, P.8
Takiff, H.9
Cerveñansky, C.10
Cole, S.T.11
Alzari, P.M.12
-
62
-
-
0028785583
-
Mechanism of GroEL action: Productive release of polypeptide from a sequestered position under GroES
-
Weissman, J. S., C. M. Hohl, O. Kovalenko, Y. Kashi, S. Chen, K. Braig, H. R. Saibil, W. A. Fenton, and A. L. Horwich. 1995. Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 83:577-587.
-
(1995)
Cell
, vol.83
, pp. 577-587
-
-
Weissman, J.S.1
Hohl, C.M.2
Kovalenko, O.3
Kashi, Y.4
Chen, S.5
Braig, K.6
Saibil, H.R.7
Fenton, W.A.8
Horwich, A.L.9
-
63
-
-
0030870719
-
The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex
-
DOI 10.1038/41944
-
Xu, Z., A. L. Horwich, and P. B. Sigler. 1997. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741-750. (Pubitemid 27375147)
-
(1997)
Nature
, vol.388
, Issue.6644
, pp. 741-750
-
-
Xu, Z.1
Horwich, A.L.2
Sigler, P.B.3
-
64
-
-
33749339997
-
Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL
-
DOI 10.1038/sj.emboj.7601326, PII 7601326
-
Yokokawa, M., C. Wada, T. Ando, N. Sakai, A. Yagi, S. H. Yoshimura, and K. Takeyasu. 2006. Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL. EMBO J. 25:4567-4576. (Pubitemid 44498130)
-
(2006)
EMBO Journal
, vol.25
, Issue.19
, pp. 4567-4576
-
-
Yokokawa, M.1
Wada, C.2
Ando, T.3
Sakai, N.4
Yagi, A.5
Yoshimura, S.H.6
Takeyasu, K.7
-
65
-
-
0032529472
-
Survey, analysis and genetic organization of genes encoding eukaryotic-like signaling proteins on a cyanobacterial genome
-
Zhang, C. C., L. Gonzalez, and V. Phalip. 1998. Survey, analysis and genetic organization of genes encoding eukaryotic-like signaling proteins on a cyanobacterial genome. Nucleic Acids Res. 26:3619-3625.
-
(1998)
Nucleic Acids Res.
, vol.26
, pp. 3619-3625
-
-
Zhang, C.C.1
Gonzalez, L.2
Phalip, V.3
-
66
-
-
0030754926
-
Optimization of DNA shuffling for high fidelity recombination
-
DOI 10.1093/nar/25.6.1307
-
Zhao, H., and F. H. Arnold. 1997. Optimization of DNA shuffling for high fidelity recombination. Nucleic Acids Res. 25:1307-1308. (Pubitemid 27303227)
-
(1997)
Nucleic Acids Research
, vol.25
, Issue.6
, pp. 1307-1308
-
-
Zhao, H.1
Arnold, F.H.2
|