메뉴 건너뛰기




Volumn 80, Issue 3, 2009, Pages

Topological analysis of polymeric melts: Chain-length effects and fast-converging estimators for entanglement length

Author keywords

[No Author keywords available]

Indexed keywords

CHAIN-ENDS; ENTANGLED SYSTEM; NON-GAUSSIAN; POLYMER MODELS; POLYMERIC MELTS; PREFACTORS; PRIMITIVE PATH; PRIMITIVE PATH ANALYSIS; SINGLE CHAINS; TOPOLOGICAL ANALYSIS;

EID: 70349974721     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.80.031803     Document Type: Article
Times cited : (296)

References (68)
  • 4
    • 0038711087 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.85.1128
    • M. Kröger and S. Hess, Phys. Rev. Lett. 85, 1128 (2000). 10.1103/PhysRevLett.85.1128
    • (2000) Phys. Rev. Lett. , vol.85 , pp. 1128
    • Kröger, M.1    Hess, S.2
  • 5
    • 0017502001 scopus 로고
    • 10.1002/pi.4980090209
    • S. F. Edwards, Br. Polym. J. 9, 140 (1977). 10.1002/pi.4980090209
    • (1977) Br. Polym. J. , vol.9 , pp. 140
    • Edwards, S.F.1
  • 8
    • 19044388149 scopus 로고    scopus 로고
    • 10.1016/j.cpc.2005.01.020
    • M. Kröger, Comput. Phys. Commun. 168, 209 (2005). 10.1016/j.cpc.2005.01.020
    • (2005) Comput. Phys. Commun. , vol.168 , pp. 209
    • Kröger, M.1
  • 15
    • 65349120597 scopus 로고    scopus 로고
    • 10.1039/b820264h
    • M. Laso, Soft Matter 5, 1762 (2009). 10.1039/b820264h
    • (2009) Soft Matter , vol.5 , pp. 1762
    • Laso, M.1
  • 19
    • 33846833781 scopus 로고    scopus 로고
    • 10.1016/j.cplett.2007.01.031;
    • D. Curcó and C. Alemán, Chem. Phys. Lett. 436, 189 (2007) 10.1016/j.cplett.2007.01.031
    • (2007) Chem. Phys. Lett. , vol.436 , pp. 189
    • Curcó, D.1    Alemán, C.2
  • 22
    • 0037444640 scopus 로고    scopus 로고
    • 10.1063/1.1553764
    • J. D. Schieber, J. Chem. Phys. 118, 5162 (2003). 10.1063/1.1553764
    • (2003) J. Chem. Phys. , vol.118 , pp. 5162
    • Schieber, J.D.1
  • 27
    • 70349915406 scopus 로고    scopus 로고
    • http://lammps.sandia.gov/
  • 32
    • 33244488459 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.72.061802
    • R. S. Hoy and M. O. Robbins, Phys. Rev. E 72, 061802 (2005). 10.1103/PhysRevE.72.061802
    • (2005) Phys. Rev. e , vol.72 , pp. 061802
    • Hoy, R.S.1    Robbins, M.O.2
  • 33
    • 70349917155 scopus 로고    scopus 로고
    • http://www.complexfluids.ethz.ch/cgi-bin/Z1
  • 34
    • 70349933847 scopus 로고    scopus 로고
    • In Ref.6, the primitive path had been defined as the path with minimum elastic energy, rather than the one with shortest length. Larson discussed this topic and concluded that methods producing the shortest length paths were preferable. The geometric approaches Z1 and CReTA minimize total contour length rather than an elastic energy, and provide us with a shortest parameter-free path
    • In Ref.6, the primitive path had been defined as the path with minimum elastic energy, rather than the one with shortest length. Larson discussed this topic and concluded that methods producing the shortest length paths were preferable. The geometric approaches Z1 and CReTA minimize total contour length rather than an elastic energy, and provide us with a shortest parameter-free path.
  • 40
    • 70349899802 scopus 로고    scopus 로고
    • For the case of wormlike (non-Gaussian) chains, C (N) is analytically related to the persistence length lp of short chains; C (N+1) =C (∞) -2α (1- αN) (1-α) -2 /N, where α=exp (- l0 / lp), and C (∞) = limN→0 C (N) = (α+1) / (α-1). Note that limα→1 C (N) =N and limα→0 C (N) =1. In the limit lp l0, the mean-square end-to-end distance of a wormlike chain consequently reads R ee 2 =2 lp L (1- [lp /L] [1-exp (-L/ lp)]) with contour length L (N-1) l0. In the further limit L lp, R ee 2 / (N-1) =2 lp l0 =C (∞) l02 lK l0, where lK denotes Kuhn length. These limits are not employed in this work, as we are seeking for corrections in the regime where these limits have not necessarily been reached. For freely rotating chains with a fixed bending angle θ the same result is obtained upon identifying α= cosθ.
    • For the case of wormlike (non-Gaussian) chains, C (N) is analytically related to the persistence length lp of short chains; C (N+1) =C (∞) -2α (1- αN) (1-α) -2 /N, where α=exp (- l0 / lp), and C (∞) = limN→ C (N) = (α+1) / (α-1). Note that limα→1 C (N) =N and limα→0 C (N) =1. In the limit lp l0, the mean-square end-to-end distance of a wormlike chain consequently reads R ee 2 =2 lp L (1- [lp /L] [1-exp (-L/ lp)]) with contour length L (N-1) l0. In the further limit L lp, R ee 2 / (N-1) =2 lp l0 =C (∞) l02 lK l0, where lK denotes Kuhn length. These limits are not employed in this work, as we are seeking for corrections in the regime where these limits have not necessarily been reached. For freely rotating chains with a fixed bending angle θ the same result is obtained upon identifying α= cosθ. The above expressions for C (N) are directly obtained from a bond-vector correlation function which exponentially decreases with distance between bonds. However, simulations have shown that flexible bead spring chains in melts do not follow this form at small and moderate N. The ratio C (N) must sublinearly and monotonically increase with N in order to uniquely determine Ne from Eq. 15, which limits its use to systems which do not change their statistics on a length scale larger than entanglement length. For the wormlike chain as well as equilibrated bead spring chains, C (N)/N decreases monotonically with N.
  • 41
    • 70349933849 scopus 로고    scopus 로고
    • A. E. Likhtman (private communication). See also Refs..
    • Likhtman, A.E.1
  • 42
    • 0030025568 scopus 로고    scopus 로고
    • 10.1016/S0006-3495(96)79630-3;
    • J. Kas, Biophys. J. 70, 609 (1996) 10.1016/S0006-3495(96)79630-3
    • (1996) Biophys. J. , vol.70 , pp. 609
    • Kas, J.1
  • 43
    • 0031386328 scopus 로고    scopus 로고
    • 10.1051/jp2:1997214;
    • R. Granek, J. Phys. II 7, 1761 (1997) 10.1051/jp2:1997214
    • (1997) J. Phys. II , vol.7 , pp. 1761
    • Granek, R.1
  • 44
    • 34547363829 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.76.010501
    • S. Ramanathan and D. C. Morse, Phys. Rev. E 76, 010501 (R) (2007). 10.1103/PhysRevE.76.010501
    • (2007) Phys. Rev. e , vol.76 , pp. 010501
    • Ramanathan, S.1    Morse, D.C.2
  • 49
    • 70349922469 scopus 로고    scopus 로고
    • Reference reported Ne >40 and that Z became linear at N>24.
    • Reference reported Ne >40 and that Z became linear at N>24.
  • 50
    • 42749100050 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.70.011803
    • G. Buck and E. J. Rawdon, Phys. Rev. E 70, 011803 (2004). 10.1103/PhysRevE.70.011803
    • (2004) Phys. Rev. e , vol.70 , pp. 011803
    • Buck, G.1    Rawdon, E.J.2
  • 53
    • 38949188548 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.100.050602;
    • N. C. Karayiannis and M. Laso, Phys. Rev. Lett. 100, 050602 (2008) 10.1103/PhysRevLett.100.050602
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 050602
    • Karayiannis, N.C.1    Laso, M.2
  • 55
    • 70349919347 scopus 로고    scopus 로고
    • A counterexample would be LJ+FENE bead spring chains made semiflexible by the addition of a bending potential U=- kθ cos (θ); when kθ =2 LJ, C (Ne) is still well below C (θ).
    • A counterexample would be LJ+FENE bead spring chains made semiflexible by the addition of a bending potential U=- kθ cos (θ); when kθ =2 LJ, C (Ne) is still well below C (θ).
  • 58
    • 70349913242 scopus 로고    scopus 로고
    • Unfortunately, this approach can not be used with standard PPA because the tension in the primitive chains produces Lpp2 (n) 'b pp 2 n2, and L pp 2 (n) =A n2 +Cn cannot be fit. PPA runs using the linearized-FENE potential of Ref. were also performed, but the performance was poor. In contrast, Z1 and similar methods (e.g.,) produce a wide range of local fractional contour length reductions
    • Unfortunately, this approach can not be used with standard PPA because the tension in the primitive chains produces Lpp2 (n) 'b pp 2 n2, and L pp 2 (n) =A n2 +Cn cannot be fit. PPA runs using the linearized-FENE potential of Ref. were also performed, but the performance was poor. In contrast, Z1 and similar methods (e.g.,) produce a wide range of local fractional contour length reductions.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.