메뉴 건너뛰기




Volumn 20, Issue 9, 2009, Pages 1450-1462

Processing short-term and long-term information with a combination of polynomial approximation techniques and time-delay neural networks

Author keywords

Orthogonal polynomials; Short term and long term information; Time series; Time delay neural networks

Indexed keywords

ARTIFICIAL DATA; LONG-TERM BEHAVIOR; LONG-TERM TREND; NEW APPROACHES; ON-LINE TOOLS; ORTHOGONAL EXPANSION; ORTHOGONAL POLYNOMIAL; ORTHOGONAL POLYNOMIALS; REAL-WORLD APPLICATION; SHORT-TERM AND LONG-TERM INFORMATION; TAPPED DELAY LINE; TEMPORAL INFORMATION; TIME-DELAY NEURAL NETWORKS; USER NUMBER;

EID: 70349238624     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2009.2024679     Document Type: Article
Times cited : (16)

References (50)
  • 1
    • 0029714384 scopus 로고    scopus 로고
    • Neural networks for time series processing
    • G. Dorffner, "Neural networks for time series processing," Neural Netw. World, vol. 6, no. 4, pp. 447-468, 1996.
    • (1996) Neural Netw. World , vol.6 , Issue.4 , pp. 447-468
    • Dorffner, G.1
  • 2
    • 34547186794 scopus 로고    scopus 로고
    • Fusion of soft computing and hard computing: Applications and research opportunities
    • G. Yen and D. B. Fogel, Eds. Piscataway, NJ: IEEE, ch. 3, pp
    • S. J. Ovaska and B. Sick, "Fusion of soft computing and hard computing: Applications and research opportunities," in Computational Intelligence: Principles and Practice, G. Yen and D. B. Fogel, Eds. Piscataway, NJ: IEEE, 2006, ch. 3, pp. 47-72.
    • (2006) Computational Intelligence: Principles and Practice , pp. 47-72
    • Ovaska, S.J.1    Sick, B.2
  • 3
    • 33847265378 scopus 로고    scopus 로고
    • Fusion of soft and hard computing: Multidimensional categorization of computationally intelligent hybrid systems
    • B. Sick and S. J. Ovaska, "Fusion of soft and hard computing: Multidimensional categorization of computationally intelligent hybrid systems," Neural Comput. Appl., vol. 16, no. 2, pp. 125-137, 2007.
    • (2007) Neural Comput. Appl , vol.16 , Issue.2 , pp. 125-137
    • Sick, B.1    Ovaska, S.J.2
  • 4
    • 0030644395 scopus 로고    scopus 로고
    • Fast least-squares polynomial approximation in moving time windows
    • Munich, Germany
    • E. Fuchs and K. Donner, "Fast least-squares polynomial approximation in moving time windows," in Proc. Int. Conf. Acoust. Speech Signal Process., Munich, Germany, 1997, vol. 3, pp. 1965-1968.
    • (1997) Proc. Int. Conf. Acoust. Speech Signal Process , vol.3 , pp. 1965-1968
    • Fuchs, E.1    Donner, K.2
  • 5
    • 0003516048 scopus 로고    scopus 로고
    • Schnelle Quadratmittelapproximation in gleitenden Zeitfenstern mit diskreten orthogonalen Polynomen
    • Aachen, Germany: Shaker-Verlag
    • E. Fuchs, Schnelle Quadratmittelapproximation in gleitenden Zeitfenstern mit diskreten orthogonalen Polynomen, ser. Berichte aus der Informatik. Aachen, Germany: Shaker-Verlag, 2000.
    • (2000) ser. Berichte aus der Informatik
    • Fuchs, E.1
  • 7
    • 0003736433 scopus 로고
    • Finite impulse response neural networks with applications in time series prediction,
    • Ph.D. dissertation, Dept. Electr. Eng, Stanford Univ, Stanford, CA
    • E. A.Wan, "Finite impulse response neural networks with applications in time series prediction," Ph.D. dissertation, Dept. Electr. Eng., Stanford Univ., Stanford, CA, 1993.
    • (1993)
    • Wan, E.A.1
  • 8
    • 0000358422 scopus 로고
    • Time series prediction by using a connectionist network with internal delay lines
    • A. S.Weigend and N. A. Gershenfeld, Eds. Reading, MA: Addison-Wesley
    • E. A. Wan, "Time series prediction by using a connectionist network with internal delay lines," in Time Series Prediction: Forecasting the Future and Understanding the Past, ser. SFI Studies in the Sciences of Complexity, A. S.Weigend and N. A. Gershenfeld, Eds. Reading, MA: Addison-Wesley, 1993, pp. 195-217.
    • (1993) Time Series Prediction: Forecasting the Future and Understanding the Past , pp. 195-217
    • Wan, E.A.1
  • 10
    • 0027226999 scopus 로고
    • Adaptive time-delay neural network for temporal correlation and prediction
    • D.-T. Lin, J. E. Dayhoff, and P. A. Ligomenides, "Adaptive time-delay neural network for temporal correlation and prediction," in SPIE-Intell. Robots Comput. Vis. XI, 1992, vol. 1826, pp. 170-181.
    • (1992) SPIE-Intell. Robots Comput. Vis. XI , vol.1826 , pp. 170-181
    • Lin, D.-T.1    Dayhoff, J.E.2    Ligomenides, P.A.3
  • 11
    • 70349262689 scopus 로고    scopus 로고
    • J. A. Howell and H. Buxton, Learning gestures with time-delay RBF networks, in Proc. 8th Int. Conf. Artif. Neural Netw., Skövde, L. Niklasson, M. Bodén, and T. Ziemke, Eds., London, U.K., 1998, 1, pp. 239-244.
    • J. A. Howell and H. Buxton, "Learning gestures with time-delay RBF networks," in Proc. 8th Int. Conf. Artif. Neural Netw., Skövde, L. Niklasson, M. Bodén, and T. Ziemke, Eds., London, U.K., 1998, vol. 1, pp. 239-244.
  • 13
    • 0141730093 scopus 로고    scopus 로고
    • Recurrent neural network architectures-An overview
    • Adaptive Processing of Sequences and Data Structures, L. Giles and M. Gori, Eds. New York: Springer-Verlag, 1387
    • A. C. Tsoi, "Recurrent neural network architectures-An overview," in Adaptive Processing of Sequences and Data Structures, ser. Lecture Notes in Computer Science, C. L. Giles and M. Gori, Eds. New York: Springer-Verlag, 1998, vol. 1387.
    • (1998) ser. Lecture Notes in Computer Science , vol.100
    • Tsoi, A.C.1
  • 14
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.
    • (1997) Neural Comput , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 15
    • 0041965934 scopus 로고    scopus 로고
    • Learning precise timing with LSTM recurrent networks
    • F. Gers, N. Schraudolph, and J. Schmidhuber, "Learning precise timing with LSTM recurrent networks," J. Mach. Learn. Res., vol. 3, pp. 115-143, 2002.
    • (2002) J. Mach. Learn. Res , vol.3 , pp. 115-143
    • Gers, F.1    Schraudolph, N.2    Schmidhuber, J.3
  • 16
    • 0012282052 scopus 로고
    • The tempo-algorithm: Learning in a neural network with variable time-delays
    • Washington, DC
    • U. Bodenhausen, "The tempo-algorithm: Learning in a neural network with variable time-delays," in Proc. Int. Joint Conf. Neural Netw., Washington, DC, 1990, vol. 1, pp. 597-600.
    • (1990) Proc. Int. Joint Conf. Neural Netw , vol.1 , pp. 597-600
    • Bodenhausen, U.1
  • 17
    • 0031274628 scopus 로고    scopus 로고
    • T.-N. Lin, C. L. Giles, B. G. Horne, and S.-Y. Kung, A delay damage model selection algorithm for NARX neural networks, IEEE Trans. Signal Process., 45, Special Issue on Neural Networks, no. 11, pp. 2719-2730, Nov. 1997.
    • T.-N. Lin, C. L. Giles, B. G. Horne, and S.-Y. Kung, "A delay damage model selection algorithm for NARX neural networks," IEEE Trans. Signal Process., vol. 45, Special Issue on Neural Networks, no. 11, pp. 2719-2730, Nov. 1997.
  • 18
    • 33646241633 scopus 로고    scopus 로고
    • Learning long-term dependencies in NARX recurrent neural networks
    • Nov
    • T. Lin, B. G. Horne, P. Tiňo, and C. L. Giles, "Learning long-term dependencies in NARX recurrent neural networks," IEEE Trans. Neural Netw., vol. 7, no. 6, pp. 1329-1338, Nov. 1996.
    • (1996) IEEE Trans. Neural Netw , vol.7 , Issue.6 , pp. 1329-1338
    • Lin, T.1    Horne, B.G.2    Tiňo, P.3    Giles, C.L.4
  • 19
    • 0007835971 scopus 로고    scopus 로고
    • Time series prediction with multilayer perceptron, FIR and Elman neural networks
    • San Diego, CA
    • T. Koskela, M. Lehtokangas, J. Saarinen, and K. Kaski, "Time series prediction with multilayer perceptron, FIR and Elman neural networks," in Proc.World Congr. Neural Netw., San Diego, CA, 1996, pp. 491-496.
    • (1996) Proc.World Congr. Neural Netw , pp. 491-496
    • Koskela, T.1    Lehtokangas, M.2    Saarinen, J.3    Kaski, K.4
  • 20
    • 0035390996 scopus 로고    scopus 로고
    • Multiresolution forecasting for futures trading using wavelet decompositions
    • Jul
    • B.-L. Zhang, R. Coggins, M. Jabri, D. Dersch, and B. Flower, "Multiresolution forecasting for futures trading using wavelet decompositions," IEEE Trans. Neural Netw., vol. 12, no. 4, pp. 765-775, Jul. 2001.
    • (2001) IEEE Trans. Neural Netw , vol.12 , Issue.4 , pp. 765-775
    • Zhang, B.-L.1    Coggins, R.2    Jabri, M.3    Dersch, D.4    Flower, B.5
  • 21
    • 33646007938 scopus 로고    scopus 로고
    • Multiresolution fir neural-networkbased learning algorithm applied to network traffic prediction
    • Mar
    • V. Alarcon-Aquino and J. Barria, "Multiresolution fir neural-networkbased learning algorithm applied to network traffic prediction," IEEE Trans. Syst. Man Cybern. C, Appl. Rev., vol. 36, no. 2, pp. 208-220, Mar. 2006.
    • (2006) IEEE Trans. Syst. Man Cybern. C, Appl. Rev , vol.36 , Issue.2 , pp. 208-220
    • Alarcon-Aquino, V.1    Barria, J.2
  • 23
    • 0026275697 scopus 로고
    • Short- and long-term online combined learning for robotic control
    • Seattle, WA
    • D. Bassi, "Short- and long-term online combined learning for robotic control," in Proc. IEEE Int. Joint Conf. Neural Netw., Seattle, WA, 1991, vol. 3, pp. 2019-2026.
    • (1991) Proc. IEEE Int. Joint Conf. Neural Netw , vol.3 , pp. 2019-2026
    • Bassi, D.1
  • 24
    • 0029485830 scopus 로고
    • A supervised neural network for dynamic systems identification
    • Tokyo, Japan
    • D. Pham and M. Sukkar, "A supervised neural network for dynamic systems identification," in Proc. 4th IEEE Int. Conf. Universal Personal Commun., Tokyo, Japan, 1995, pp. 697-701.
    • (1995) Proc. 4th IEEE Int. Conf. Universal Personal Commun , pp. 697-701
    • Pham, D.1    Sukkar, M.2
  • 25
    • 0030684460 scopus 로고    scopus 로고
    • Robust adaptive identification of dynamic systems by neural networks
    • Houston, TX
    • J. T.-H. Lo, "Robust adaptive identification of dynamic systems by neural networks," in Proc. Int. Conf. Neural Netw., Houston, TX, 1997, vol. 2, pp. 1121-1126.
    • (1997) Proc. Int. Conf. Neural Netw , vol.2 , pp. 1121-1126
    • Lo, J.T.-H.1
  • 26
    • 0036127245 scopus 로고    scopus 로고
    • Adaptive multilayer perceptrons with long- and short-term memories
    • Jan
    • J. Lo and D. Bassu, "Adaptive multilayer perceptrons with long- and short-term memories," IEEE Trans. Neural Netw., vol. 13, no. 1, pp. 22-33, Jan. 2002.
    • (2002) IEEE Trans. Neural Netw , vol.13 , Issue.1 , pp. 22-33
    • Lo, J.1    Bassu, D.2
  • 27
    • 34547133026 scopus 로고    scopus 로고
    • Training recurrent neurocontrollers for real-time applications
    • Jul
    • D. Prokhorov, "Training recurrent neurocontrollers for real-time applications," IEEE Trans. Neural Netw., vol. 18, no. 4, pp. 1003-1015, Jul. 2007.
    • (2007) IEEE Trans. Neural Netw , vol.18 , Issue.4 , pp. 1003-1015
    • Prokhorov, D.1
  • 28
    • 0003674259 scopus 로고
    • Classical Orthogonal Polynomials of a Discrete Variable
    • New York: Springer-Verlag
    • A. Nikiforov, S. Suslov, and V. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, ser. Computational Physics. New York: Springer-Verlag, 1991.
    • (1991) ser. Computational Physics
    • Nikiforov, A.1    Suslov, S.2    Uvarov, V.3
  • 29
    • 67649404063 scopus 로고    scopus 로고
    • On discrete polynomial least-squares approximation in moving time windows
    • Applications and Computation of Orthogonal Polynomials, W. Gautschi, G. Golub, and G. Opfer, Eds. Basel, Switzerland: Birkhäuser
    • E. Fuchs, "On discrete polynomial least-squares approximation in moving time windows," in Applications and Computation of Orthogonal Polynomials, ser. Numerical Mathematics, W. Gautschi, G. Golub, and G. Opfer, Eds. Basel, Switzerland: Birkhäuser, 1999, pp. 93-107, no. 131.
    • (1999) ser. Numerical Mathematics , Issue.131 , pp. 93-107
    • Fuchs, E.1
  • 30
    • 0001505159 scopus 로고
    • On generating orthogonal polynomials
    • Sep
    • W. Gautschi, "On generating orthogonal polynomials," SIAM J. Sci. Statist. Comput., vol. 3, pp. 289-317, Sep. 1982.
    • (1982) SIAM J. Sci. Statist. Comput , vol.3 , pp. 289-317
    • Gautschi, W.1
  • 31
    • 0001849258 scopus 로고
    • An algorithmic implementation of the generalized Christoffel theorem
    • Numerical Integration, G. Hämmerlin, Ed. Basel, Switzerland: Birkhäuser
    • W. Gautschi, "An algorithmic implementation of the generalized Christoffel theorem," in Numerical Integration, ser. Numerical Mathematics, G. Hämmerlin, Ed. Basel, Switzerland: Birkhäuser, 1982, vol. 57, pp. 89-106.
    • (1982) ser. Numerical Mathematics , vol.57 , pp. 89-106
    • Gautschi, W.1
  • 32
    • 84968490637 scopus 로고
    • An implementation of Christoffel's theorem in the theory of orthogonal polynomials
    • D. Galant, "An implementation of Christoffel's theorem in the theory of orthogonal polynomials," Math. Comput., vol. 25, no. 113, pp. 111-113, 1971.
    • (1971) Math. Comput , vol.25 , Issue.113 , pp. 111-113
    • Galant, D.1
  • 33
    • 0141608208 scopus 로고    scopus 로고
    • Fast and efficient second-order training of the dynamic neural network paradigm
    • Portland, OR
    • C. Gruber and B. Sick, "Fast and efficient second-order training of the dynamic neural network paradigm," in Proc. IEEE-INNS-ENNS Int. Joint Conf. Neural Netw., Portland, OR, 2003, vol. 4, pp. 2482-2487.
    • (2003) Proc. IEEE-INNS-ENNS Int. Joint Conf. Neural Netw , vol.4 , pp. 2482-2487
    • Gruber, C.1    Sick, B.2
  • 34
    • 10944241890 scopus 로고    scopus 로고
    • A comparison of first- and second-order training algorithms for dynamic neural networks
    • Budapest, Hungary
    • F. Bajramovic, C. Gruber, and B. Sick, "A comparison of first- and second-order training algorithms for dynamic neural networks," in Proc. Int. Joint Conf. Neural Netw., Budapest, Hungary, 2004, vol. 2, pp. 837-842.
    • (2004) Proc. Int. Joint Conf. Neural Netw , vol.2 , pp. 837-842
    • Bajramovic, F.1    Gruber, C.2    Sick, B.3
  • 35
    • 84943274699 scopus 로고
    • A direct method for faster backpropagation learning: The RPROP algorithm
    • San Francisco, CA
    • M. Riedmiller and H. Braun, "A direct method for faster backpropagation learning: The RPROP algorithm," in Proc. IEEE Int. Conf. Neural Netw., San Francisco, CA, 1993, vol. 1, pp. 586-591.
    • (1993) Proc. IEEE Int. Conf. Neural Netw , vol.1 , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 37
    • 0027205884 scopus 로고
    • A scaled conjugate algorithm for fast supervised learning
    • M. F. Moller, "A scaled conjugate algorithm for fast supervised learning," Neural Netw., vol. 6, no. 1, pp. 525-533, 1993.
    • (1993) Neural Netw , vol.6 , Issue.1 , pp. 525-533
    • Moller, M.F.1
  • 41
  • 43
    • 0034288853 scopus 로고    scopus 로고
    • Out-of-sample tests of forecasting accuracy: An analysis and review
    • L. J. Tashman, "Out-of-sample tests of forecasting accuracy: An analysis and review," Int. J. Forecasting, vol. 16, pp. 437-450, 2000.
    • (2000) Int. J. Forecasting , vol.16 , pp. 437-450
    • Tashman, L.J.1
  • 44
    • 33749517168 scopus 로고    scopus 로고
    • Another look at measures of forecast accuracy
    • R. J. Hyndman and A. B. Koehler, "Another look at measures of forecast accuracy," Int. J. Forecasting, vol. 22, pp. 679-688, 2006.
    • (2006) Int. J. Forecasting , vol.22 , pp. 679-688
    • Hyndman, R.J.1    Koehler, A.B.2
  • 45
    • 0242409601 scopus 로고    scopus 로고
    • Processing short-term and long-term information with a combination of hard- and soft-computing techniques
    • Washington, DC
    • C. Gruber and B. Sick, "Processing short-term and long-term information with a combination of hard- and soft-computing techniques," in Proc. IEEE Int. Conf. Syst. Man Cybern., Washington, DC, 2003, vol. 1, pp. 126-133.
    • (2003) Proc. IEEE Int. Conf. Syst. Man Cybern , vol.1 , pp. 126-133
    • Gruber, C.1    Sick, B.2
  • 46
    • 0033323244 scopus 로고    scopus 로고
    • Using temporal information in input features of neural networks
    • Edinburgh, U.K
    • E. Fuchs and B. Sick, "Using temporal information in input features of neural networks," in Proc. 9th Int. Conf. Artif. Neural Netw., Edinburgh, U.K., 1999, vol. 1, pp. 467-472.
    • (1999) Proc. 9th Int. Conf. Artif. Neural Netw , vol.1 , pp. 467-472
    • Fuchs, E.1    Sick, B.2
  • 47
    • 0036588824 scopus 로고    scopus 로고
    • Fusion of soft and hard computing techniques in indirect, online tool wear monitoring
    • May
    • B. Sick, "Fusion of soft and hard computing techniques in indirect, online tool wear monitoring," IEEE Trans. Syst. Man Cybern. C, Appl. Rev., vol. 32, no. 2, pp. 80-91, May 2002.
    • (2002) IEEE Trans. Syst. Man Cybern. C, Appl. Rev , vol.32 , Issue.2 , pp. 80-91
    • Sick, B.1
  • 48
    • 0004072170 scopus 로고
    • On-line tool wear estimation in turning through sensor data fusion and neural networks,
    • Ph.D. dissertation, Dept. Ind. Manuf. Eng, Pennsylvania State Univ, State College, PA
    • S. V. Kamarthi, "On-line tool wear estimation in turning through sensor data fusion and neural networks," Ph.D. dissertation, Dept. Ind. Manuf. Eng., Pennsylvania State Univ., State College, PA, 1994.
    • (1994)
    • Kamarthi, S.V.1
  • 49
    • 0000149521 scopus 로고
    • Updating and downdating of orthogonal polynomials with data fitting applications
    • S. Elhay, G. H. Golub, and J. Kautsky, "Updating and downdating of orthogonal polynomials with data fitting applications," SIAM J. Matrix Anal. Appl., vol. 12, no. 2, pp. 327-353, 1991.
    • (1991) SIAM J. Matrix Anal. Appl , vol.12 , Issue.2 , pp. 327-353
    • Elhay, S.1    Golub, G.H.2    Kautsky, J.3
  • 50
    • 70349250585 scopus 로고    scopus 로고
    • B. A. Pearlmutter, Dynamic recurrent neural networks, School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-CS-90-196, 1990.
    • B. A. Pearlmutter, "Dynamic recurrent neural networks," School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-CS-90-196, 1990.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.