메뉴 건너뛰기




Volumn 2, Issue , 2004, Pages 837-842

A comparison of first- And second-order training algorithms for dynamic neural networks

Author keywords

[No Author keywords available]

Indexed keywords

DATA SETS; DYNAMIC NEURAL NETWORK (DYNN); MULTILAYER PERCEPTRONS (MLP); NOISE SUPPRESSION;

EID: 10944241890     PISSN: 10987576     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2004.1380038     Document Type: Conference Paper
Times cited : (11)

References (23)
  • 1
    • 0029714384 scopus 로고    scopus 로고
    • Neural networks for time series processing
    • G. Dorffner, "Neural networks for time series processing," in Neural Network World, vol. 6 (4), pp. 447 - 468, 1996.
    • (1996) Neural Network World , vol.6 , Issue.4 , pp. 447-468
    • Dorffner, G.1
  • 3
    • 0141608208 scopus 로고    scopus 로고
    • Fast and efficient second-order training of the dynamic neural network paradigm
    • Portland
    • C. Gruber and B. Sick, "Fast and efficient second-order training of the dynamic neural network paradigm," in Proc. of the IJCNN, Portland, 2003, pp. 2482 - 2487.
    • (2003) Proc. of the IJCNN , pp. 2482-2487
    • Gruber, C.1    Sick, B.2
  • 4
    • 0007835971 scopus 로고    scopus 로고
    • Time series prediction with multilayer perceptron, FIR and Elman neural networks
    • San Diego, INNS Press
    • T. Koskela, M. Lehtokangas, J. Saarinen, and K. Kaski, "Time series prediction with multilayer perceptron, FIR and Elman neural networks," in Proc. of the WCNN, San Diego, 1996, pp. 491 - 496, INNS Press.
    • (1996) Proc. of the WCNN , pp. 491-496
    • Koskela, T.1    Lehtokangas, M.2    Saarinen, J.3    Kaski, K.4
  • 6
    • 33646241633 scopus 로고    scopus 로고
    • Learning long-term dependencies in NARX recurrent neural networks
    • T. Lin, B. G. Horne, P. Tiňo, and C. L. Giles, "Learning long-term dependencies in NARX recurrent neural networks," in IEEE Tr. on Neural Networks, vol. 7 (6), pp. 1329 - 1338. 1996.
    • (1996) IEEE Tr. on Neural Networks , vol.7 , Issue.6 , pp. 1329-1338
    • Lin, T.1    Horne, B.G.2    Tiňo, P.3    Giles, C.L.4
  • 10
    • 0028750982 scopus 로고
    • Comparison of four learning algorithms for multilayer perceptron with FIR synapses
    • N. Benvenuto, F. Piazza, and A. Uncini, "Comparison of four learning algorithms for multilayer perceptron with FIR synapses," in Proc. of the IEEE WCCI, 1994, vol. 1, pp. 309 - 314.
    • (1994) Proc. of the IEEE WCCI , vol.1 , pp. 309-314
    • Benvenuto, N.1    Piazza, F.2    Uncini, A.3
  • 11
    • 0036060632 scopus 로고    scopus 로고
    • Stochastic learning methods for dynamic neural networks: Simulated and real-data comparisons
    • K. Patan and T. Parisini, "Stochastic learning methods for dynamic neural networks: simulated and real-data comparisons," in Proc. of the ACC, 2002, vol. 4, pp. 2577 - 2582.
    • (2002) Proc. of the ACC , vol.4 , pp. 2577-2582
    • Patan, K.1    Parisini, T.2
  • 12
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • P. Werbos, "Backpropagation through time: What it does and how to do it," Proc. of the IEEE, vol. 78 (10), pp. 1550 - 1560, 1990.
    • (1990) Proc. of the IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.1
  • 14
    • 0028466750 scopus 로고
    • Advanced supervised learning in multi-layer perceptrons - From backpropagation to adaptive learning algorithms
    • Special Issue on Artificial Neural Networks
    • M. Riedmiller, "Advanced supervised learning in multi-layer perceptrons - from backpropagation to adaptive learning algorithms," in International Journal of Computer Standards and Interfaces, vol. 16 (3), pp. 265 - 278. 1994, (Special Issue on Artificial Neural Networks).
    • (1994) International Journal of Computer Standards and Interfaces , vol.16 , Issue.3 , pp. 265-278
    • Riedmiller, M.1
  • 17
    • 0001024110 scopus 로고
    • First- And second-order methods for learning: Between steepest descent and newton's method
    • R. Battiti, "First- and second-order methods for learning: Between steepest descent and newton's method," Neural Computation, vol. 4 (2), pp. 141 - 166, 1992.
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 141-166
    • Battiti, R.1
  • 18
    • 0030631963 scopus 로고    scopus 로고
    • Partial BFGS-update and efficient step-length calculation for three-layer neural networks
    • K. Saito and R. Nakano, "Partial BFGS-update and efficient step-length calculation for three-layer neural networks," Neural Computation, vol. 9 (1), pp. 123 - 141, 1997.
    • (1997) Neural Computation , vol.9 , Issue.1 , pp. 123-141
    • Saito, K.1    Nakano, R.2
  • 19
    • 0027205884 scopus 로고
    • A scaled conjugate algorithm for fast supervised learning
    • M. F. Moller, "A scaled conjugate algorithm for fast supervised learning," Neural Networks, vol. 6 (1), pp. 525 - 533, 1993.
    • (1993) Neural Networks , vol.6 , Issue.1 , pp. 525-533
    • Moller, M.F.1
  • 21
    • 0004042460 scopus 로고
    • PROBEN 1 - A set of neural network benchmark problems and benchmarking rules
    • University of Karlsruhe
    • L. Prechelt, "PROBEN 1 - A Set of Neural Network Benchmark Problems and Benchmarking Rules," Tech. rep. 21/94, University of Karlsruhe, 1994.
    • (1994) Tech. Rep. , vol.21 , Issue.94
    • Prechelt, L.1
  • 23
    • 0242409601 scopus 로고    scopus 로고
    • Processing short-term and long-term information with a combination of hard- And soft-computing techniques
    • Washington D.C
    • C. Gruber and B. Sick, "Processing short-term and long-term information with a combination of hard- and soft-computing techniques," in Proc. of the IEEE SMC Conf., Washington D.C., 2003, pp. 126 - 133.
    • (2003) Proc. of the IEEE SMC Conf. , pp. 126-133
    • Gruber, C.1    Sick, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.