-
2
-
-
11944267498
-
-
Japan Patent 6803364, 1968
-
(b) Morita, K. Japan Patent 6803364, 1968; Chem. Abstr. 1968, 69, 58828s.
-
(1968)
Chem. Abstr.
, vol.69
-
-
Morita, K.1
-
3
-
-
0001461985
-
-
(c) Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815.
-
(1968)
Bull. Chem. Soc. Jpn.
, vol.41
, pp. 2815
-
-
Morita, K.1
Suzuki, Z.2
Hirose, H.3
-
4
-
-
34347262098
-
-
(a) Mason, G.; Housseman, C.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46, 4614.
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 4614
-
-
Mason, G.1
Housseman, C.2
Zhu, J.3
-
5
-
-
0037026517
-
-
(b) Mergott, D. J.; Frank, S. A.; Roush, W. R. Org. Lett. 2002, 4, 3157.
-
(2002)
Org. Lett.
, vol.4
, pp. 3157
-
-
Mergott, D.J.1
Frank, S.A.2
Roush, W.R.3
-
6
-
-
34548185871
-
-
(a) Basaviah, D.; Rao, K. V.; Reddy, R. J. Chem. Soc. Rev. 2007, 36, 1581.
-
(2007)
Chem. Soc. Rev.
, vol.36
, pp. 1581
-
-
Basaviah, D.1
Rao, K.V.2
Reddy, R.J.3
-
7
-
-
0037366617
-
-
(b) Basaviah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811.
-
(2003)
Chem. Rev.
, vol.103
, pp. 811
-
-
Basaviah, D.1
Rao, A.J.2
Satyanarayana, T.3
-
9
-
-
0348041984
-
-
Zhao, G.-L.; Huang, J.-W.; Shi, M. Org. Lett. 2003, 5, 4737.
-
(2003)
Org. Lett.
, vol.5
, pp. 4737
-
-
Zhao, G.-L.1
Huang, J.-W.2
Shi, M.3
-
11
-
-
36348983413
-
-
(a) Konig, C. M.; Harms, K.; Koert, U. Org. Lett. 2007, 9, 4777.
-
(2007)
Org. Lett.
, vol.9
, pp. 4777
-
-
Konig, C.M.1
Harms, K.2
Koert, U.3
-
13
-
-
41649086484
-
-
For synthetic application of Baylis-Hillman adducts see
-
For synthetic application of Baylis-Hillman adducts see: (a) Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511.
-
(2008)
Tetrahedron
, vol.64
, pp. 4511
-
-
Singh, V.1
Batra, S.2
-
14
-
-
14544282851
-
-
(b) Kabalka, G. W.; Venkataiah, B.; Dong, G. Organometallics 2005, 24, 762.
-
(2005)
Organometallics
, vol.24
, pp. 762
-
-
Kabalka, G.W.1
Venkataiah, B.2
Dong, G.3
-
15
-
-
0035823715
-
-
(c) Iwabuchi, Y.; Furukawa, M.; Esumi, T.; Hatakeyama, S. Chem. Commun. 2001, 2030.
-
(2001)
Chem. Commun.
, pp. 2030
-
-
Iwabuchi, Y.1
Furukawa, M.2
Esumi, T.3
Hatakeyama, S.4
-
19
-
-
59649098742
-
-
(a) Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev. 2009, 109, 1.
-
(2009)
Chem. Rev.
, vol.109
, pp. 1
-
-
Declerck, V.1
Martinez, J.2
Lamaty, F.3
-
20
-
-
52449119366
-
-
(b) Abermil, N.; Masson, G.; Zhu, J. J. Am. Chem. Soc. 2008, 130, 12596.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 12596
-
-
Abermil, N.1
Masson, G.2
Zhu, J.3
-
22
-
-
34247562659
-
-
(d) Sorbetti, J. M.; Clary, K. N.; Rankic, D. A.; Wulff, J. E.; Parvez, M.; Back, T. G. J. Org. Chem. 2007, 72, 3326.
-
(2007)
J. Org. Chem.
, vol.72
, pp. 3326
-
-
Sorbetti, J.M.1
Clary, K.N.2
Rankic, D.A.3
Wulff, J.E.4
Parvez, M.5
Back, T.G.6
-
23
-
-
33746298422
-
-
(e) Gausepohl, R.; Buskens, P.; Kleinen, J.; Bruckmann, A.; Lehmann, C. W.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2006, 45, 3689.
-
(2006)
Angew. Chem., Int. Ed.
, vol.45
, pp. 3689
-
-
Gausepohl, R.1
Buskens, P.2
Kleinen, J.3
Bruckmann, A.4
Lehmann, C.W.5
Klankermayer, J.6
Leitner, W.7
-
26
-
-
15744396095
-
-
(h) Matsui, K.; Takizawa, S.; Sasai, H. J. Am. Chem. Soc. 2005, 127, 3680.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 3680
-
-
Matsui, K.1
Takizawa, S.2
Sasai, H.3
-
27
-
-
15744383666
-
-
(i) Shi, M.; Chen, L.-H.; Li, C.-Q. J. Am. Chem. Soc. 2005, 127, 3790.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 3790
-
-
Shi, M.1
Chen, L.-H.2
Li, C.-Q.3
-
29
-
-
0141743697
-
-
(k) Kawahara, S.; Nakano, A.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. Org. Lett. 2003, 5, 3103.
-
(2003)
Org. Lett.
, vol.5
, pp. 3103
-
-
Kawahara, S.1
Nakano, A.2
Esumi, T.3
Iwabuchi, Y.4
Hatakeyama, S.5
-
30
-
-
0141923582
-
-
2-symmetric catalyst provided low asymmetric induction in the resulting MBH adducts. For example see
-
2-symmetric catalyst provided low asymmetric induction in the resulting MBH adducts. For example see: (a) McDougal, N. T.; Schaus, S. E. J. Am. Chem. Soc. 2003, 125, 12094.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 12094
-
-
McDougal, N.T.1
Schaus, S.E.2
-
31
-
-
0033520752
-
-
(b) Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am. Chem. Soc. 1999, 121, 10219.
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 10219
-
-
Iwabuchi, Y.1
Nakatani, M.2
Yokoyama, N.3
Hatakeyama, S.4
-
32
-
-
0029078895
-
-
(c) Oishi, T.; Oguri, H.; Hirama, M. Tetrahedron: Asymmetry 1995, 6, 1241.
-
(1995)
Tetrahedron: Asymmetry
, vol.6
, pp. 1241
-
-
Oishi, T.1
Oguri, H.2
Hirama, M.3
-
33
-
-
0028284153
-
-
(d) Basaviah, D.; Pandiaraju, S.; Sarma, P. K. S. Tetrahedron Lett. 1994, 35, 4227.
-
(1994)
Tetrahedron Lett.
, vol.35
, pp. 4227
-
-
Basaviah, D.1
Pandiaraju, S.2
Sarma, P.K.S.3
-
34
-
-
34249712553
-
-
(a) Utsumi, N.; Zhang, H.; Tanaka, F.; Barbas, C. F. III Angew. Chem., Int. Ed. 2007, 46, 1878.
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 1878
-
-
Utsumi, N.1
Zhang, H.2
Tanaka, F.3
Barbas III, C.F.4
-
35
-
-
15044342248
-
-
(b) Shi, M.; Xu, Y.-M.; Shi, Y.-L. Chem. - Eur. J. 2005, 11, 1794.
-
(2005)
Chem. - Eur. J.
, vol.11
, pp. 1794
-
-
Shi, M.1
Xu, Y.-M.2
Shi, Y.-L.3
-
38
-
-
0037011306
-
-
(e) Shi, M.; Xu, Y.-M. Angew. Chem., Int. Ed. 2002, 41, 4507.
-
(2002)
Angew. Chem., Int. Ed.
, vol.41
, pp. 4507
-
-
Shi, M.1
Xu, Y.-M.2
-
40
-
-
4644231912
-
-
(a) Faltin, C.; Fleming, E. M.; Connon, S. J. J. Org. Chem. 2004, 69, 6496.
-
(2004)
J. Org. Chem.
, vol.69
, pp. 6496
-
-
Faltin, C.1
Fleming, E.M.2
Connon, S.J.3
-
41
-
-
0013308184
-
-
(b) Cai, J.; Zhou, Z.; Zhao, G.; Tang, C. Org. Lett. 2002, 4, 4723.
-
(2002)
Org. Lett.
, vol.4
, pp. 4723
-
-
Cai, J.1
Zhou, Z.2
Zhao, G.3
Tang, C.4
-
42
-
-
0035838860
-
-
(c) Yu, C. Z.; Liu, B.; Hu, L. Q. J. Org. Chem. 2001, 66, 5413.
-
(2001)
J. Org. Chem.
, vol.66
, pp. 5413
-
-
Yu, C.Z.1
Liu, B.2
Hu, L.Q.3
-
43
-
-
0027974067
-
-
(d) Auge, J.; Lubin, N.; Lubineau, A. Tetrahedron Lett. 1994, 35, 7947.
-
(1994)
Tetrahedron Lett.
, vol.35
, pp. 7947
-
-
Auge, J.1
Lubin, N.2
Lubineau, A.3
-
46
-
-
65249127674
-
-
(a) Amarante, G. W; Milagre, H. M. S.; Vaz, B. C.; Ferreira, B. R. V.; Eberlin, M. N.; Coelho, F. J. Org. Chem. 2009, 74, 3031.
-
(2009)
J. Org. Chem.
, vol.74
, pp. 3031
-
-
Amarante, G.W.1
Milagre, H.M.S.2
Vaz, B.C.3
Ferreira, B.R.V.4
Eberlin, M.N.5
Coelho, F.6
-
47
-
-
33645467341
-
-
(b) Krafft, M. E.; Haxell, T. F. N.; Seibert, K. A.; Abboud, K. A. J. Am. Chem. Soc. 2006, 128, 4174.
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 4174
-
-
Krafft, M.E.1
Haxell, T.F.N.2
Seibert, K.A.3
Abboud, K.A.4
-
48
-
-
4544278079
-
-
(c) Santos, L. S.; Pavam, C. H.; Almeida, W. P.; Coelho, F.; Eberlin, M. N. Angew. Chem., Int. Ed. 2004, 43, 4330.
-
(2004)
Angew. Chem., Int. Ed.
, vol.43
, pp. 4330
-
-
Santos, L.S.1
Pavam, C.H.2
Almeida, W.P.3
Coelho, F.4
Eberlin, M.N.5
-
49
-
-
18744378020
-
-
Price, K. E.; Broadwater, S. J.; Walker, B. J.; McQuade, D. T. J. Org. Chem. 2005, 70, 3980.
-
(2005)
J. Org. Chem.
, vol.70
, pp. 3980
-
-
Price, K.E.1
Broadwater, S.J.2
Walker, B.J.3
McQuade, D.T.4
-
50
-
-
0037169021
-
-
Aggarwal, V. K.; Dean, D. K.; Mereu, A.; Williams, R. J. Org. Chem. 2002, 67, 510.
-
(2002)
J. Org. Chem.
, vol.67
, pp. 510
-
-
Aggarwal, V.K.1
Dean, D.K.2
Mereu, A.3
Williams, R.4
-
52
-
-
37849014325
-
-
Robiette, R.; Aggarwal, V. K.; Harvey, J. N. J. Am. Chem. Soc. 2007, 129, 15513.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 15513
-
-
Robiette, R.1
Aggarwal, V.K.2
Harvey, J.N.3
-
53
-
-
17044437071
-
-
Aggarwal, V. K.; Fulford, S. Y.; Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2005, 44, 1706.
-
(2005)
Angew. Chem., Int. Ed.
, vol.44
, pp. 1706
-
-
Aggarwal, V.K.1
Fulford, S.Y.2
Lloyd-Jones, G.C.3
-
54
-
-
15744375697
-
-
Gaussian, Inc.: Wallingford, CT, See the Supporting Information for the full citation
-
Frisch et al. . Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004. (See the Supporting Information for the full citation. )
-
(2004)
Gaussian 03, Revision C.02
-
-
Frisch1
-
56
-
-
0033731344
-
-
(a) Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 4811.
-
(2000)
J. Phys. Chem. A
, vol.104
, pp. 4811
-
-
Lynch, B.J.1
Fast, P.L.2
Harris, M.3
Truhlar, D.G.4
-
57
-
-
0037422363
-
-
(b) Lynch, B. J.; Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2003, 107, 1384.
-
(2003)
J. Phys. Chem. A
, vol.107
, pp. 1384
-
-
Lynch, B.J.1
Zhao, Y.2
Truhlar, D.G.3
-
58
-
-
27444433822
-
-
(a) Seckute, J.; Menke, J. L.; Emnett, R. J.; Patterson, E. V.; Cramer, C. J. J. Org. Chem. 2005, 70, 8649.
-
(2005)
J. Org. Chem.
, vol.70
, pp. 8649
-
-
Seckute, J.1
Menke, J.L.2
Emnett, R.J.3
Patterson, E.V.4
Cramer, C.J.5
-
59
-
-
33746875442
-
-
(b) Lingwood, M.; Hammond, J. R.; Hrovat, D. A.; Mayer, J. M.; Borden, W. T. J. Chem. Theory Comput. 2006, 2, 740.
-
(2006)
J. Chem. Theory Comput.
, vol.2
, pp. 740
-
-
Lingwood, M.1
Hammond, J.R.2
Hrovat, D.A.3
Mayer, J.M.4
Borden, W.T.5
-
60
-
-
0038269037
-
-
(a) Ochterski, J. W.; Petersson, G. A.; Montgomery, J. A. Jr. J. Chem. Phys. 1996, 104, 2598.
-
(1996)
J. Chem. Phys.
, vol.104
, pp. 2598
-
-
Ochterski, J.W.1
Petersson, G.A.2
Montgomery Jr., J.A.3
-
61
-
-
0006012501
-
-
(b) Montgomery, J. A. Jr.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 2000, 112, 6532.
-
(2000)
J. Chem. Phys.
, vol.112
, pp. 6532
-
-
Montgomery Jr., J.A.1
Frisch, M.J.2
Ochterski, J.W.3
Petersson, G.A.4
-
63
-
-
4143095330
-
-
(b) Kendall, R. A.; Dunning, T. H. Jr.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.
-
(1992)
J. Chem. Phys.
, vol.96
, pp. 6796
-
-
Kendall, R.A.1
Dunning Jr., T.H.2
Harrison, R.J.3
-
64
-
-
0031209054
-
-
(a) Cancès, M. T.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032.
-
(1997)
J. Chem. Phys.
, vol.107
, pp. 3032
-
-
Cancès, M.T.1
Mennucci, B.2
Tomasi, J.3
-
66
-
-
0031553301
-
-
(c) Mennucci, B.; Cancès, E.; Tomasi, J. J. Phys. Chem. B 1997, 101, 10506.
-
(1997)
J. Phys. Chem. B
, vol.101
, pp. 10506
-
-
Mennucci, B.1
Cancès, E.2
Tomasi, J.3
-
67
-
-
84962428823
-
-
(d) Tomasi, J.; Mennucci, B.; Cancès, E. J. Mol. Strust.: THEOCHEM 1999, 464, 211.
-
(1999)
J. Mol. Strust.: THEOCHEM
, vol.464
, pp. 211
-
-
Tomasi, J.1
Mennucci, B.2
Cancès, E.3
-
68
-
-
1942438163
-
-
The entropic contributions of the solute evaluated with the help of the gas-phase frequency calculation are not quite good toward the application to a solute in a continuum dielectric
-
The entropic contributions of the solute evaluated with the help of the gas-phase frequency calculation are not quite good toward the application to a solute in a continuum dielectric (Leung, B. O.; Reid, D. L.; Armstrong, D. A.; Rauk, A. J. Phys. Chem. A 2004, 108, 2720).
-
(2004)
J. Phys. Chem. A
, vol.108
, pp. 2720
-
-
Leung, B.O.1
Reid, D.L.2
Armstrong, D.A.3
Rauk, A.4
-
69
-
-
64349102770
-
-
However, the use of single-point energies in solvent continuum is a widely adopted method toward gauging the role of solvent continuum in chemical reactions. Some very recent examples include
-
However, the use of single-point energies in solvent continuum is a widely adopted method toward gauging the role of solvent continuum in chemical reactions. Some very recent examples include: (a) Schoenebeck, F.; Houk, K. N. J. Org. Chem. 2009, 74, 1464.
-
(2009)
J. Org. Chem.
, vol.74
, pp. 1464
-
-
Schoenebeck, F.1
Houk, K.N.2
-
70
-
-
64249090422
-
-
(b) Domingo, L. R.; Picher, M. T.; Sáez, J. A. J. Org. Chem. 2009, 74, 2726.
-
(2009)
J. Org. Chem.
, vol.74
, pp. 2726
-
-
Domingo, L.R.1
Picher, M.T.2
Sáez, J.A.3
-
71
-
-
69949134480
-
-
(c) Brookes, N. J.; Ariafard, A.; Stranger, R.; Yates, B. F. J. Am. Chem. Soc. 2009, 131, 5800.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 5800
-
-
Brookes, N.J.1
Ariafard, A.2
Stranger, R.3
Yates, B.F.4
-
72
-
-
0040942563
-
-
Parr, R. G.; von Szentpaly, L.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922.
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 1922
-
-
Parr, R.G.1
Von Szentpaly, L.2
Liu, S.3
-
75
-
-
70249149211
-
-
See Table S6 in the Supporting Information for further details
-
See Table S6 in the Supporting Information for further details.
-
-
-
-
76
-
-
70249097632
-
-
note
-
More details on the choice of basis set as well as the computed activation parameters obtained by using different basis sets (such as 6-311+G**, cc-pVDZ, cc-pVTZ, and aug-cc-pVDZ) are provided in Table S5 in the Supporting Information.
-
-
-
-
77
-
-
70249091724
-
-
note
-
water.
-
-
-
-
78
-
-
70249120285
-
-
note
-
3-catalyzed reaction.
-
-
-
-
79
-
-
70249136059
-
-
note
-
To examine the role of solvent continuum in the aza-MBH reaction arising as a result of the likely differences in the geometries between the gas phase and the condensed phase, we have additionally carried out geometry optimizations using THF as a representative solvent continuum. The results are summarized in Table S8 in the Supporting Information. Interestingly, the single-point energies calculated in the continuum dielectric medium by using the gas-phase geometries are found to be nearly identical. The same trends were reproduced by full geometry optimizations in the THF dielectric continuum.
-
-
-
-
80
-
-
70249140484
-
-
note
-
The barrier for the formation of the E-isomer of 2b is found to be about 5 kcal/mol higher than that for the corresponding Z-isomer.
-
-
-
-
81
-
-
70249149212
-
-
note
-
The relatively higher activity of the phosphorous-containing Lewis bases in the aza-MBH reaction can partially be attributed to the ease of accommodating a positive charge on a phosphorous as compared to that on a nitrogen atom.
-
-
-
-
86
-
-
34948873209
-
-
(e) Lundin, A.; Panas, I.; Ahlberg, E. J. Phys. Chem. A 2007, 111, 9087.
-
(2007)
J. Phys. Chem. A
, vol.111
, pp. 9087
-
-
Lundin, A.1
Panas, I.2
Ahlberg, E.3
-
87
-
-
37849051960
-
-
(f) Shi, F.-Q.; Li, X.; Xia, Y.; Zhang, L.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 15503.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 15503
-
-
Shi, F.-Q.1
Li, X.2
Xia, Y.3
Zhang, L.4
Yu, Z.-X.5
-
88
-
-
33947614581
-
-
(g) Xia, Y.; Liang, Y.; Chen, Y.; Wang, M.; Jiao, L.; Huang, F.; Liu, S.; Li, Y.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 3470.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 3470
-
-
Xia, Y.1
Liang, Y.2
Chen, Y.3
Wang, M.4
Jiao, L.5
Huang, F.6
Liu, S.7
Li, Y.8
Yu, Z.-X.9
-
89
-
-
70249138255
-
-
note
-
For comparison of Mulliken atomic charges in TS(1b-1c) and 1c see Figure S2 in the Supporting Information.
-
-
-
-
90
-
-
70249110339
-
-
note
-
Interaction energy (ΔH) is calculated without the basis set superposition error (BSSE) correction.
-
-
-
-
91
-
-
70249117759
-
-
note
-
The computed LUMO energies of bare and water-bound mesyl imines are respectively found to be -0.040 and -0.049 eV at the mPW1K/6-31+G** level of theory. See Table S9 in the Supporting Information.
-
-
-
-
92
-
-
70249141537
-
-
note
-
The relative energies for the elimination step are provided in Table S10 in the Supporting Information.
-
-
-
-
93
-
-
70249110709
-
-
note
-
3-catalyzed aza-MBH reaction.
-
-
-
-
94
-
-
70249151330
-
-
note
-
We have also been able to locate other near-degenerate transition states for the C-C bond formation with different spatial dispositions of the two water molecules than those discussed here. However, all such transition states are found to be of higher energies than that for the 2w′ mode. See Table S12 and Figure S1 in the Supporting Information for more details.
-
-
-
-
95
-
-
28844451041
-
-
Buskens, P.; Klankermayer, J.; Leitner, W. J. Am. Chem. Soc. 2005, 127, 16762.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 16762
-
-
Buskens, P.1
Klankermayer, J.2
Leitner, W.3
-
96
-
-
70249103399
-
-
note
-
a values toward protonation of the zwitterionic intermediates or the base is suggested as capable of slowing down the reaction rates.
-
-
-
-
97
-
-
70249100910
-
-
note
-
a values for water, methanol, and formic acid are respectively 15.4, 15.5, and 3.7.
-
-
-
-
98
-
-
70249085843
-
-
note
-
(a) The LUMO energies of water/methanol/formic acid-bound mesyl imine are quite comparable; e.g., water (-0.049), MeOH (-0.049), and formic acid (-0.051). (b) Additionally, the global electrophilicity indices for the cocatalyst-bound imines are estimated to be quite similar as well. See Table S9 in the Supporting Information for global electrophilicity indices of electrophiles employed in this study.
-
-
-
-
99
-
-
70249113293
-
-
note
-
Calculated bond orders further support the geometric features of these transition states. See Table S13 in the Supporting Information for more details of the NBO analysis on the cocatalyst-assisted proton transfer transition state TS(1c-1d).
-
-
-
-
100
-
-
70249119916
-
-
note
-
3- catalyzed aza-MBH reaction and the corresponding MBH reaction.
-
-
-
-
101
-
-
70249102690
-
-
note
-
See Table S9 in the Supporting Information for global electrophilicity indices of electrophiles (with and without the bound cocatalysts) considered in this study.
-
-
-
-
102
-
-
70249105314
-
-
note
-
See Table S15 in the Supporting Information for a summary of relative energies for the corresponding transition states for the MBH reaction.
-
-
-
-
103
-
-
70249119549
-
-
note
-
In the cyclic four-membered transition state for the unassisted proton transfer, the C-N distance in mesyl imine (aza-MBH) is longer than the C-Odistance (MBH). See Table S14 in the Supporting Information for a comparative analysis of the key geometrical features of TS(1c-1d).
-
-
-
-
104
-
-
70249122647
-
-
note
-
In an earlier report on the NMe3-catalyzed MBH reaction between acrolein and formaldehyde, we have shown that in the presence of polar protic cocatalyst the energies of the transition states for the C-C bond formation and the proton transfer can indeed become quite comparable. See ref 18 for more details.
-
-
-
-
105
-
-
70249125718
-
-
note
-
See Table S15 in the Supporting Information for the computed relative energies for the MeOH-assisted MBH reaction.
-
-
-
-
106
-
-
70249104586
-
-
note
-
See Table S6 in the Supporting Information for details on the activation barriers computed with respect to the prereacting complexes or the corresponding intermediates.
-
-
-
|