-
1
-
-
33846205116
-
-
See, for example, (a) Free Radicals; Kochi, J. K., Ed.; Wiley: New York, 1973.
-
See, for example, (a) Free Radicals; Kochi, J. K., Ed.; Wiley: New York, 1973.
-
-
-
-
7
-
-
0038208381
-
-
(d) Stubbe, J.; Nocera, D. G.; Yee, C. S.; Chang, M. C. Y. Chem. Rev. 2003, 103, 2167-2201.
-
(2003)
Chem. Rev
, vol.103
, pp. 2167-2201
-
-
Stubbe, J.1
Nocera, D.G.2
Yee, C.S.3
Chang, M.C.Y.4
-
9
-
-
0037130656
-
-
Mayer, J. M.; Hrovat, D. A.; Thomas, J. L.; Borden, W. T. J. Am. Chem.-Soc. 2002, 124, 11142-11147.
-
(2002)
J. Am. Chem.-Soc
, vol.124
, pp. 11142-11147
-
-
Mayer, J.M.1
Hrovat, D.A.2
Thomas, J.L.3
Borden, W.T.4
-
10
-
-
0031285835
-
-
For some other recent computational studies of PCET reactions, see: a
-
For some other recent computational studies of PCET reactions, see: (a) Siegbahn, P. E. M.; Blomberg, M. R. A.; Crabtree, R. H. Theor. Chem. Acc. 1997, 97, 289-300.
-
(1997)
Theor. Chem. Acc
, vol.97
, pp. 289-300
-
-
Siegbahn, P.E.M.1
Blomberg, M.R.A.2
Crabtree, R.H.3
-
11
-
-
0000660599
-
-
(b) Siegbahn, P. E. M.; Eriksson, L.; Himo, F.; Pavlov, M. J. Phys. Chem. B 1998, 102, 10622-9.
-
(1998)
J. Phys. Chem. B
, vol.102
, pp. 10622-10629
-
-
Siegbahn, P.E.M.1
Eriksson, L.2
Himo, F.3
Pavlov, M.4
-
13
-
-
0042388581
-
-
(d) Carra, C.; Iordanova, N.; Hammes-Schiffer, S. J. Am. Chem. Soc. 2003, 125, 10429-10436.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 10429-10436
-
-
Carra, C.1
Iordanova, N.2
Hammes-Schiffer, S.3
-
14
-
-
3242876557
-
-
(e) Olivella, S.; Anglada, J. M.; Solé, A.; Bofill, J. M. Chem.-Eur. J. 2004, 10, 3404-3410.
-
(2004)
Chem.-Eur. J
, vol.10
, pp. 3404-3410
-
-
Olivella, S.1
Anglada, J.M.2
Solé, A.3
Bofill, J.M.4
-
18
-
-
0345491105
-
-
Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785-789
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
19
-
-
0033731344
-
-
Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 4811-4815.
-
(2000)
J. Phys. Chem. A
, vol.104
, pp. 4811-4815
-
-
Lynch, B.J.1
Fast, P.L.2
Harris, M.3
Truhlar, D.G.4
-
20
-
-
0000543185
-
-
Baboul, A. G.; Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem. Phys. 1999, 110, 7650-7657.
-
(1999)
J. Chem. Phys
, vol.110
, pp. 7650-7657
-
-
Baboul, A.G.1
Curtiss, L.A.2
Redfern, P.C.3
Raghavachari, K.4
-
21
-
-
0001669478
-
-
Foti, M, Ingold, K. U, Lusztyk, J. J. Am. Chem. Soc. 1994, 116, 9440-9447. Similar activation parameters for abstraction of the hydroxyl hydrogen atom from β-naphthol by a phenoxyl radical were also reported in this paper
-
Foti, M.; Ingold, K. U.; Lusztyk, J. J. Am. Chem. Soc. 1994, 116, 9440-9447. Similar activation parameters for abstraction of the hydroxyl hydrogen atom from β-naphthol by a phenoxyl radical were also reported in this paper.
-
-
-
-
22
-
-
36549091139
-
-
Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265-3269.
-
(1984)
J. Chem. Phys
, vol.80
, pp. 3265-3269
-
-
Frisch, M.J.1
Pople, J.A.2
Binkley, J.S.3
-
23
-
-
84986468715
-
-
Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R. J. Comput. Chem. 1983, 4, 294-301.
-
(1983)
J. Comput. Chem
, vol.4
, pp. 294-301
-
-
Clark, T.1
Chandrasekhar, J.2
Spitznagel, G.W.3
Schleyer, P.V.R.4
-
24
-
-
0347170005
-
-
Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257-2261.
-
(1972)
J. Chem. Phys
, vol.56
, pp. 2257-2261
-
-
Hehre, W.J.1
Ditchfield, R.2
Pople, J.A.3
-
25
-
-
4143095330
-
-
Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796-6806.
-
(1992)
J. Chem. Phys
, vol.96
, pp. 6796-6806
-
-
Kendall, R.A.1
Dunning Jr., T.H.2
Harrison, R.J.3
-
27
-
-
33846204274
-
-
Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Montgomery, J. A, Jr, Vreven, T, Kudin, K. N, Burant, J. C, Millam, J. M, Iyengar, S. S, Tomasi, J, Barone, V, Mennucci, B, Cossi, M, Scalmani, G, Rega, N, Petersson, G. A, Nakatsuji, H, Hada, M, Ehara, M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai, H, Klene, M, Li, X, Knox, J. E, Hratchian, H. P, Cross, J. B, Bakken, V, Adamo, C, Jaramillo, J, Gomperts, R, Stratmann, R. E, Yazyev, O, Austin, A. J, Cammi, R, Pomelli, C, Ochterski, J. W, Ayala, P. Y, Morokuma, K, Voth, G. A, Salvador, P, Dannenberg, J. J, Zakrzewski, V. G, Dapprich, S, Daniels, A. D, Strain, M. C, Farkas, O, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Ortiz, J. V, Cui, Q, Baboul, A. G, Clifford, S, Cioslowski, J, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Martin, R. L, Fox, D. J, Keit
-
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
-
-
-
-
28
-
-
33846213480
-
-
Selected geometries were also reoptimized with the 6-311+G(2df,2p) basis set. However, the relative (U)MPW1K and (U)B3LYP energies at these geometries were essentially the same as the single-point aug-cc-pVTZ energies, computed at the geometries optimized with the 6-31+G(d,p) basis set.
-
Selected geometries were also reoptimized with the 6-311+G(2df,2p) basis set. However, the relative (U)MPW1K and (U)B3LYP energies at these geometries were essentially the same as the single-point aug-cc-pVTZ energies, computed at the geometries optimized with the 6-31+G(d,p) basis set.
-
-
-
-
29
-
-
33846219464
-
-
It should be recalled that MPW1K also underestimated the barrier heights in the 40-reaction test set used by Truhlar and co-workers, but B3LYP underestimated the barrier heights by nearly 4 times as much as MPW1K. 7
-
7
-
-
-
-
30
-
-
0001061763
-
-
See, for example
-
See, for example: Houk, K. N.; Rondan, N. G.; Mareda, J. Tetrahedron 1985, 47, 1555-1563.
-
(1985)
Tetrahedron
, vol.47
, pp. 1555-1563
-
-
Houk, K.N.1
Rondan, N.G.2
Mareda, J.3
-
31
-
-
33846199505
-
-
Although MPW1K predicts that the enthalpy of the hydrogen-bonded complex is 6.7 kcal/mol lower than that of the isolated reactants, the complex is also calculated to be lower in entropy by 28.1 cal/mol K. Thus, at 298 K, ΔG, 1.7 kcal/mol for complex formation, and the equilibrium constant, in terms of mole fractions of phenoxyl, α-naphthol, and the hydrogen-bonded complex formed from them is K, 5 × 10-2. In the solvent mixtures used by Fotie et al, the equilibrium constant for concentrations, expressed in mol/ L, is about a factor of 10 smaller than the value for mole fractions. The highest concentrations of α-naphthol used were 0.3 M, so under these conditions, the ratio of hydrogen-bonded complex to free phenoxyl radical would have been on the order of 10-4. There are obvious inaccuracies in using enthalpy and entropy, computed for the gas phase, to calculate the equilibrium constant for hydrogen-bonded complex formation in the
-
-4. There are obvious inaccuracies in using enthalpy and entropy, computed for the gas phase, to calculate the equilibrium constant for hydrogen-bonded complex formation in the solvent mixtures used in ref 9. Nevertheless, the very small equilibrium constant that we do obtain provides good reason to believe that the phenoxyl does not react with α-naphthol in an irreversibly formed hydrogen-bonded complex between them. Instead, our calculations predict that complex formation is reversible, so that the overall enthalpy of activation should be based on the free reactants, rather than on the hydrogen-bonded complex between them.
-
-
-
-
32
-
-
33846225989
-
-
9
-
9
-
-
-
|