메뉴 건너뛰기




Volumn , Issue , 2007, Pages 141-148

Studies in lower bounding probability of evidence using the Markov inequality

Author keywords

[No Author keywords available]

Indexed keywords

ABSOLUTE ERROR; EMPIRICAL EVALUATIONS; ERROR BOUND; HARD PROBLEMS; HIGH CONFIDENCE; IMPORTANCE SAMPLING; LOWER BOUNDS; MARKOV INEQUALITY; NP-HARD;

EID: 70049107583     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (13)

References (21)
  • 1
    • 80053187695 scopus 로고    scopus 로고
    • An anytime scheme for bounding posterior beliefs
    • Bidyuk, B. and Dechter, R. (2006a). An anytime scheme for bounding posterior beliefs. In AAAI.
    • (2006) AAAI
    • Bidyuk, B.1    Dechter, R.2
  • 2
    • 33750707747 scopus 로고    scopus 로고
    • Improving bound propagation
    • Bidyuk, B. and Dechter, R. (2006b). Improving bound propagation. In ECAI.
    • (2006) ECAI
    • Bidyuk, B.1    Dechter, R.2
  • 4
    • 0035590196 scopus 로고    scopus 로고
    • Sampling algorithms for estimating the mean of bounded random variables
    • Cheng, J. (2001). Sampling algorithms for estimating the mean of bounded random variables. In Computational Statistics. Volume 16(1).
    • (2001) Computational Statistics , vol.16 , Issue.1
    • Cheng, J.1
  • 5
    • 0001249662 scopus 로고    scopus 로고
    • Ais-bn: An adaptive importance sampling algorithm for evidential reasoning in large bayesian networks
    • Cheng, J. and Druzdzel, M. J. (2000). Ais-bn: An adaptive importance sampling algorithm for evidential reasoning in large bayesian networks. J. Artif. Intell. Res. (JAIR), 13:155-188. (Pubitemid 33682085)
    • (2000) Journal of Artificial Intelligence Research , vol.13 , pp. 155-188
    • Cheng, J.1    Druzdzel, M.J.2
  • 6
    • 0027560587 scopus 로고
    • Approximating probabilistic inference in Bayesian belief networks is np-hard
    • Dagum, P. and Luby, M. (1993). Approximating probabilistic inference in bayesian belief networks is np-hard. In AAAI-1993.
    • (1993) AAAI-1993
    • Dagum, P.1    Luby, M.2
  • 7
    • 0031170063 scopus 로고    scopus 로고
    • An optimal approximation algorithm for Bayesian inference
    • PII S0004370297000131
    • Dagum, P. and Luby, M. (1997). An optimal approximation algorithm for bayesian inference. Artificial Intelligence, 93:1-27. (Pubitemid 127401111)
    • (1997) Artificial Intelligence , vol.93 , Issue.1-2 , pp. 1-27
    • Dagum, P.1    Luby, M.2
  • 8
    • 80053209106 scopus 로고    scopus 로고
    • Mixtures of deterministic-probabilistic networks and their and/or search space
    • Dechter, R. and Mateescu, R. (2004). Mixtures of deterministic- probabilistic networks and their and/or search space. In UAL
    • (2004) UAL
    • Dechter, R.1    Mateescu, R.2
  • 9
    • 1642312636 scopus 로고    scopus 로고
    • Mini-buckets: A general scheme for bounded inference
    • Dechter, R. and Rish, I. (2003). Mini-buckets: A general scheme for bounded inference. J. ACM, 50(2): 107-153.
    • (2003) J. ACM , vol.50 , Issue.2 , pp. 107-153
    • Dechter, R.1    Rish, I.2
  • 10
    • 0038715348 scopus 로고    scopus 로고
    • Optimizing exact genetic linkage computations
    • Fishelson, M. and Geiger, D. (2003). Optimizing exact genetic linkage computations. In RECOMB 2003.
    • (2003) RECOMB 2003
    • Fishelson, M.1    Geiger, D.2
  • 11
    • 80053260506 scopus 로고    scopus 로고
    • Approximate inference algorithms for hybrid Bayesian networks with discrete constraints
    • Gogate, V. and Dechter, R. (2005). Approximate inference algorithms for hybrid bayesian networks with discrete constraints. UAL
    • (2005) UAL
    • Gogate, V.1    Dechter, R.2
  • 12
    • 36348983221 scopus 로고    scopus 로고
    • Samplesearch: A scheme that searches for consistent samples
    • Gogate, V. and Dechter, R. (2007). Samplesearch: A scheme that searches for consistent samples. AISTATS-2007.
    • (2007) AISTATS-2007
    • Gogate, V.1    Dechter, R.2
  • 14
    • 0007178970 scopus 로고    scopus 로고
    • A Monte Carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques
    • PII S0888613X97100044
    • Hernández, L., Moral, S., and Salmerön, A. (1998). A monte carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques. International Journal of Approximate Reasoning, 18:53-91. (Pubitemid 128393704)
    • (1998) International Journal of Approximate Reasoning , vol.18 , Issue.1-2 , pp. 53-91
    • Hernandez, L.D.1    Moral, S.2    Salmeron, A.3
  • 15
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random variables
    • Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301):13-30.
    • (1963) Journal of the American Statistical Association , vol.58 , Issue.301 , pp. 13-30
    • Hoeffding, W.1
  • 16
    • 70450242309 scopus 로고
    • A method of one-sided nonparametric inference for the mean of a nonnegative population
    • Kaplan, H. M. (1987). A method of one-sided nonparametric inference for the mean of a nonnegative population. The American Statistician, 41(2):157-158.
    • (1987) The American Statistician , vol.41 , Issue.2 , pp. 157-158
    • Kaplan, H.M.1
  • 20
    • 34547366652 scopus 로고    scopus 로고
    • Minisat v1.13 - A sat solver with conflict-clause minimization
    • Sorensson, N. and Een, N. (2005). Minisat v1.13 - a sat solver with conflict-clause minimization. In SAT 2005.
    • (2005) SAT 2005
    • Sorensson, N.1    Een, N.2
  • 21
    • 33748255514 scopus 로고    scopus 로고
    • Importance sampling algorithms for Bayesian networks: Principles and performance
    • Yuan, C. and Druzdzel, M. J. (2006). Importance sampling algorithms for Bayesian networks: Principles and performance. Mathematical and Computer Modelling.
    • (2006) Mathematical and Computer Modelling
    • Yuan, C.1    Druzdzel, M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.